Difference between revisions of "User:Ulf Rehmann/pages related to algebraic groups"
Ulf Rehmann (talk | contribs) (Created page with "These 160 pages do contain the keyword "algebraic group": Abelian variety | Adele group | Adjoint group | Adjoint representation of a Lie group | [[Algebraic ...") |
Ulf Rehmann (talk | contribs) m |
||
Line 1: | Line 1: | ||
These 160 pages do contain the keyword "algebraic group": | These 160 pages do contain the keyword "algebraic group": | ||
− | [[Abelian variety]] | | + | G=geometric |
− | [[Adele group]] | | + | Ar=arithmetic |
− | [[Adjoint group]] | | + | S=Structural |
− | [[Adjoint representation of a Lie group]] | | + | R=Representation |
+ | An=Analytic | ||
+ | Gr=Group theory | ||
+ | I=Invariant theory | ||
+ | C=Classification | ||
+ | LA=Lie algebra | ||
+ | |||
+ | |||
+ | G [[Abelian variety]] | | ||
+ | Ar [[Adele group]] | | ||
+ | S [[Adjoint group]] | | ||
+ | R [[Adjoint representation of a Lie group]] | | ||
[[Algebraic curve]] | | [[Algebraic curve]] | | ||
[[Algebraic geometry]] | | [[Algebraic geometry]] | | ||
− | [[Algebraic group]] | | + | S [[Algebraic group]] | |
− | [[Algebraic group of transformations]] | | + | G [[Algebraic group of transformations]] | |
[[Algebraic independence]] | | [[Algebraic independence]] | | ||
[[Algebraic surface]] | | [[Algebraic surface]] | | ||
− | [[Algebraic torus]] | | + | S [[Algebraic torus]] | |
− | [[Algebraic variety, automorphism of an]] | | + | G [[Algebraic variety, automorphism of an]] | |
− | [[Analytic group]] | | + | An [[Analytic group]] | |
− | [[Anisotropic group]] | | + | S [[Anisotropic group]] | |
− | [[Anisotropic kernel]] | | + | S [[Anisotropic kernel]] | |
− | [[Arithmetic group]] | | + | Ar [[Arithmetic group]] | |
− | [[Automorphic function]] | | + | An [[Automorphic function]] | |
− | [[Borel fixed-point theorem]] | | + | G [[Borel fixed-point theorem]] | |
− | [[Borel subgroup]] | | + | S [[Borel subgroup]] | |
− | [[Bruhat decomposition]] | | + | S [[Bruhat decomposition]] | |
− | [[Cartan subalgebra]] | | + | S [[Cartan subalgebra]] | |
− | [[Cartan subgroup]] | | + | S [[Cartan subgroup]] | |
− | [[Cartan theorem]] | | + | S [[Cartan theorem]] | |
− | [[Character group]] | | + | Gr [[Character group]] | |
− | [[Character of a group]] | | + | Gr [[Character of a group]] | |
− | [[Chevalley group]] | | + | S [[Chevalley group]] | |
− | [[Classical group]] | | + | G [[Classical group]] | |
− | [[Comitant]] | | + | I [[Comitant]] | |
− | [[Compact group]] | | + | An [[Compact group]] | |
− | [[Complementary series (of representations)]] | | + | R [[Complementary series (of representations)]] | |
− | [[Complexification of a Lie group]] | | + | An [[Complexification of a Lie group]] | |
− | [[Congruence subgroup]] | | + | Ar [[Congruence subgroup]] | |
− | [[Congruence subgroup problem]] | | + | Ar [[Congruence subgroup problem]] | |
− | [[Connected component of the identity]] | | + | S [[Connected component of the identity]] | |
[[Constructible subset]] | | [[Constructible subset]] | | ||
− | [[Contragredient representation]] | | + | R [[Contragredient representation]] | |
− | [[Deformation]] | | + | G [[Deformation]] | |
− | [[Diagonal group]] | | + | S [[Diagonal group]] | |
− | [[Diagonalizable algebraic group]] | | + | S [[Diagonalizable algebraic group]] | |
[[Differential algebra]] | | [[Differential algebra]] | | ||
[[Dimension polynomial]] | | [[Dimension polynomial]] | | ||
− | [[Discrete subgroup]] | | + | Ar [[Discrete subgroup]] | |
[[Dixmier mapping]] | | [[Dixmier mapping]] | | ||
[[Duality]] | | [[Duality]] | | ||
[[Extension of a differential field]] | | [[Extension of a differential field]] | | ||
− | [[Finite group]] | | + | Gr [[Finite group]] | |
[[Finiteness theorems]] | | [[Finiteness theorems]] | | ||
− | [[Flag]] | | + | G [[Flag]] | |
− | [[Flag structure]] | | + | G [[Flag structure]] | |
− | [[Formal group]] | | + | G [[Formal group]] | |
− | [[Form of an algebraic group]] | | + | S [[Form of an algebraic group]] | |
− | [[Form of an (algebraic) structure]] | | + | S [[Form of an (algebraic) structure]] | |
[[Galois cohomology]] | | [[Galois cohomology]] | | ||
− | [[General linear group]] | | + | Ex [[General linear group]] | |
[[General position]] | | [[General position]] | | ||
− | [[Group]] | | + | Gr [[Group]] | |
− | [[Group of finite Morley rank]] | | + | Gr [[Group of finite Morley rank]] | |
− | [[Group scheme]] | | + | G [[Group scheme]] | |
− | [[Hasse principle]] | | + | Ar [[Hasse principle]] | |
[[Hilbert theorem]] | | [[Hilbert theorem]] | | ||
− | [[Homogeneous space]] | | + | G [[Homogeneous space]] | |
− | [[Homogeneous space of an algebraic group]] | | + | G [[Homogeneous space of an algebraic group]] | |
− | [[Hopf algebra]] | | + | G [[Hopf algebra]] | |
− | [[Idele]] | | + | Ar [[Idele]] | |
− | [[Invariants, theory of]] | | + | I [[Invariants, theory of]] | |
− | [[Iwasawa decomposition]] | | + | S [[Iwasawa decomposition]] | |
[[Jacobi variety]] | | [[Jacobi variety]] | | ||
[[Jordan algebra]] | | [[Jordan algebra]] | | ||
− | [[Jordan decomposition]] | | + | S [[Jordan decomposition]] | |
− | [[Jordan matrix]] | | + | S [[Jordan matrix]] | |
[[Kempf vanishing theorem]] | | [[Kempf vanishing theorem]] | | ||
− | [[Lie algebra]] | | + | LA [[Lie algebra]] | |
− | [[Lie algebra, algebraic]] | | + | LA [[Lie algebra, algebraic]] | |
− | [[Lie algebra of an algebraic group]] | | + | LA [[Lie algebra of an algebraic group]] | |
− | [[Lie algebra, reductive]] | | + | LA [[Lie algebra, reductive]] | |
− | [[Lie algebra, semi-simple]] | | + | LA [[Lie algebra, semi-simple]] | |
− | [[Lie algebra, solvable]] | | + | LA [[Lie algebra, solvable]] | |
− | [[Lie algebra, supersolvable]] | | + | LA [[Lie algebra, supersolvable]] | |
− | [[Lie group]] | | + | An [[Lie group]] | |
− | [[Lie group, compact]] | | + | An [[Lie group, compact]] | |
− | [[Lie group, nilpotent]] | | + | An [[Lie group, nilpotent]] | |
− | [[Lie group, semi-simple]] | | + | An [[Lie group, semi-simple]] | |
− | [[Lie group, solvable]] | | + | An [[Lie group, solvable]] | |
− | [[Lie group, supersolvable]] | | + | An [[Lie group, supersolvable]] | |
− | [[Lie p-algebra]] | | + | LA [[Lie p-algebra]] | |
− | [[Lie theorem]] | | + | G [[Lie theorem]] | |
− | [[Linear algebraic group]] | | + | Ex [[Linear algebraic group]] | |
− | [[Linear algebraic groups, arithmetic theory of]] | | + | Ar [[Linear algebraic groups, arithmetic theory of]] | |
− | [[Linear group]] | | + | Ex [[Linear group]] | |
− | [[Matsushima criterion]] | | + | G [[Matsushima criterion]] | |
− | [[Maximal torus]] | | + | S [[Maximal torus]] | |
− | [[Moduli theory]] | | + | G [[Moduli theory]] | |
− | [[Mumford hypothesis]] | | + | G [[Mumford hypothesis]] | |
[[Non-Abelian cohomology]] | | [[Non-Abelian cohomology]] | | ||
− | [[Orbit]] | | + | G [[Orbit]] | |
− | [[Orthogonal group]] | | + | Ex [[Orthogonal group]] | |
− | [[Parabolic subalgebra]] | | + | S [[Parabolic subalgebra]] | |
− | [[Parabolic subgroup]] | | + | S [[Parabolic subgroup]] | |
[[Period mapping]] | | [[Period mapping]] | | ||
[[Picard group]] | | [[Picard group]] | | ||
Line 104: | Line 115: | ||
[[Principal analytic fibration]] | | [[Principal analytic fibration]] | | ||
[[Principal homogeneous space]] | | [[Principal homogeneous space]] | | ||
− | [[Quantum groups]] | | + | G [[Quantum groups]] | |
− | [[Quasi-split group]] | | + | S [[Quasi-split group]] | |
− | [[Radical of a group]] | | + | S [[Radical of a group]] | |
− | [[Rank]] | | + | S [[Rank]] | |
− | [[Rank of a Lie group]] | | + | S [[Rank of a Lie group]] | |
− | [[Rank of an algebraic group]] | | + | S [[Rank of an algebraic group]] | |
[[Rationality theorems]] | | [[Rationality theorems]] | | ||
[[Rational representation]] | | [[Rational representation]] | | ||
[[Rational singularity]] | | [[Rational singularity]] | | ||
[[Reduced scheme]] | | [[Reduced scheme]] | | ||
− | [[Reductive group]] | | + | S [[Reductive group]] | |
− | [[Regular torus]] | | + | S [[Regular torus]] | |
− | [[Relative root system]] | | + | S [[Relative root system]] | |
− | [[Representation of a compact group(2)]] | | + | R [[Representation of a compact group(2)]] | |
− | [[Representation of a group]] | | + | R [[Representation of a group]] | |
− | [[Satake compactification]] | | + | G [[Satake compactification]] | |
[[Schneider method]] | | [[Schneider method]] | | ||
− | [[Schubert calculus]] | | + | G [[Schubert calculus]] | |
− | [[Schubert cell]] | | + | G [[Schubert cell]] | |
− | [[Schubert cycle]] | | + | G [[Schubert cycle]] | |
− | [[Schubert variety]] | | + | G [[Schubert variety]] | |
[[Selberg conjecture]] | | [[Selberg conjecture]] | | ||
[[Semi-invariant(2)]] | | [[Semi-invariant(2)]] | | ||
− | [[Semi-simple algebraic group]] | | + | S [[Semi-simple algebraic group]] | |
− | [[Semi-simple element]] | | + | S [[Semi-simple element]] | |
[[Shimura variety]] | | [[Shimura variety]] | | ||
− | [[Simple group]] | | + | Gr [[Simple group]] | |
− | [[Simply-connected group]] | | + | S [[Simply-connected group]] | |
[[Singular point]] | | [[Singular point]] | | ||
[[Smooth scheme]] | | [[Smooth scheme]] | | ||
[[Solv manifold]] | | [[Solv manifold]] | | ||
− | [[Spinor group]] | | + | Ex [[Spinor group]] | |
− | [[Split group]] | | + | S [[Split group]] | |
[[Stability theorems in algebraic K-theory]] | | [[Stability theorems in algebraic K-theory]] | | ||
[[Stability theory (in logic)]] | | [[Stability theory (in logic)]] | | ||
[[Steinberg module]] | | [[Steinberg module]] | | ||
[[Steinberg symbol]] | | [[Steinberg symbol]] | | ||
− | [[Symplectic group]] | | + | Ex [[Symplectic group]] | |
− | [[Tamagawa measure]] | | + | Ar [[Tamagawa measure]] | |
− | [[Tamagawa number]] | | + | Ar [[Tamagawa number]] | |
[[Tilting theory]] | | [[Tilting theory]] | | ||
− | [[Tits building]] | | + | G [[Tits building]] | |
[[Tits quadratic form]] | | [[Tits quadratic form]] | | ||
− | [[Tits system]] | | + | S [[Tits system]] | |
[[Topological dynamical system]] | | [[Topological dynamical system]] | | ||
− | [[Torus]] | | + | S [[Torus]] | |
[[Transcendental number]] | | [[Transcendental number]] | | ||
− | [[Transformation group]] | | + | G [[Transformation group]] | |
[[Trigonalizable element]] | | [[Trigonalizable element]] | | ||
[[Uniform distribution]] | | [[Uniform distribution]] | | ||
[[Uniform subgroup]] | | [[Uniform subgroup]] | | ||
− | [[Unipotent element]] | | + | S [[Unipotent element]] | |
− | [[Unipotent group]] | | + | S [[Unipotent group]] | |
− | [[Weyl group]] | | + | S [[Weyl group]] | |
− | [[Weyl module]] | | + | R [[Weyl module]] | |
[[Witt vector]] | | [[Witt vector]] | | ||
[[Zeta-function]] | | [[Zeta-function]] | |
Revision as of 07:40, 30 March 2012
These 160 pages do contain the keyword "algebraic group":
G=geometric Ar=arithmetic S=Structural R=Representation An=Analytic Gr=Group theory I=Invariant theory C=Classification LA=Lie algebra
G Abelian variety |
Ar Adele group |
S Adjoint group |
R Adjoint representation of a Lie group |
Algebraic curve |
Algebraic geometry |
S Algebraic group |
G Algebraic group of transformations |
Algebraic independence |
Algebraic surface |
S Algebraic torus |
G Algebraic variety, automorphism of an |
An Analytic group |
S Anisotropic group |
S Anisotropic kernel |
Ar Arithmetic group |
An Automorphic function |
G Borel fixed-point theorem |
S Borel subgroup |
S Bruhat decomposition |
S Cartan subalgebra |
S Cartan subgroup |
S Cartan theorem |
Gr Character group |
Gr Character of a group |
S Chevalley group |
G Classical group |
I Comitant |
An Compact group |
R Complementary series (of representations) |
An Complexification of a Lie group |
Ar Congruence subgroup |
Ar Congruence subgroup problem |
S Connected component of the identity |
Constructible subset |
R Contragredient representation |
G Deformation |
S Diagonal group |
S Diagonalizable algebraic group |
Differential algebra |
Dimension polynomial |
Ar Discrete subgroup |
Dixmier mapping |
Duality |
Extension of a differential field |
Gr Finite group |
Finiteness theorems |
G Flag |
G Flag structure |
G Formal group |
S Form of an algebraic group |
S Form of an (algebraic) structure |
Galois cohomology |
Ex General linear group |
General position |
Gr Group |
Gr Group of finite Morley rank |
G Group scheme |
Ar Hasse principle |
Hilbert theorem |
G Homogeneous space |
G Homogeneous space of an algebraic group |
G Hopf algebra |
Ar Idele |
I Invariants, theory of |
S Iwasawa decomposition |
Jacobi variety |
Jordan algebra |
S Jordan decomposition |
S Jordan matrix |
Kempf vanishing theorem |
LA Lie algebra |
LA Lie algebra, algebraic |
LA Lie algebra of an algebraic group |
LA Lie algebra, reductive |
LA Lie algebra, semi-simple |
LA Lie algebra, solvable |
LA Lie algebra, supersolvable |
An Lie group |
An Lie group, compact |
An Lie group, nilpotent |
An Lie group, semi-simple |
An Lie group, solvable |
An Lie group, supersolvable |
LA Lie p-algebra |
G Lie theorem |
Ex Linear algebraic group |
Ar Linear algebraic groups, arithmetic theory of |
Ex Linear group |
G Matsushima criterion |
S Maximal torus |
G Moduli theory |
G Mumford hypothesis |
Non-Abelian cohomology |
G Orbit |
Ex Orthogonal group |
S Parabolic subalgebra |
S Parabolic subgroup |
Period mapping |
Picard group |
Picard scheme |
Principal analytic fibration |
Principal homogeneous space |
G Quantum groups |
S Quasi-split group |
S Radical of a group |
S Rank |
S Rank of a Lie group |
S Rank of an algebraic group |
Rationality theorems |
Rational representation |
Rational singularity |
Reduced scheme |
S Reductive group |
S Regular torus |
S Relative root system |
R Representation of a compact group(2) |
R Representation of a group |
G Satake compactification |
Schneider method |
G Schubert calculus |
G Schubert cell |
G Schubert cycle |
G Schubert variety |
Selberg conjecture |
Semi-invariant(2) |
S Semi-simple algebraic group |
S Semi-simple element |
Shimura variety |
Gr Simple group |
S Simply-connected group |
Singular point |
Smooth scheme |
Solv manifold |
Ex Spinor group |
S Split group |
Stability theorems in algebraic K-theory |
Stability theory (in logic) |
Steinberg module |
Steinberg symbol |
Ex Symplectic group |
Ar Tamagawa measure |
Ar Tamagawa number |
Tilting theory |
G Tits building |
Tits quadratic form |
S Tits system |
Topological dynamical system |
S Torus |
Transcendental number |
G Transformation group |
Trigonalizable element |
Uniform distribution |
Uniform subgroup |
S Unipotent element |
S Unipotent group |
S Weyl group |
R Weyl module |
Witt vector |
Zeta-function |
Ulf Rehmann/pages related to algebraic groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/pages_related_to_algebraic_groups&oldid=23712