Character group

From Encyclopedia of Mathematics
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]

The character group of a group $G$ is the group $X(G) = \def\Hom{\textrm{Hom}}\Hom(G,A)$ of all characters of $G$ (cf. Character of a group) with values in an Abelian group $A$, under the operation

$$\def\a{\alpha}\def\b{\beta}(\a\b)(g) = \a(g)\b(g),\quad g\in G,\quad \a,\b\in X(G),$$ induced by the operation in $A$. When $A=T = \{ z\in\C \;|\ \ |z| =1\}$, then

$$X(G) \simeq \prod_p \Hom(G,\Z(p^\infty)),$$ where $\Z(p^\infty)$ are quasi-cyclic groups, one for each prime number $p$. This group is algebraically compact (see Pure submodule). If $G$ is Abelian, then $X(G)$ is a divisible group if and only if $G$ is torsion free and it is a reduced group if and only if $G$ is a torsion group [Fu].

The character group of a topological group $G$ is the group $X(G)$ of all continuous homomorphisms $G\to T$, equipped with the compact-open topology. It is a Hausdorff Abelian topological group. If $G$ is locally compact, then so is $X(G)$; if $G$ is compact, then $X(G)$ is discrete, and if $G$ is discrete, then $X(G)$ is compact.

Examples of character groups:

$$X(T)\simeq \Z,\quad X(\Z)\simeq T,\quad X(\R) \simeq \R,\quad X(G)\simeq G $$ for any finite discrete Abelian group $G$.

With every continuous homomorphism of topological groups $\def\phi{\varphi}\phi:G\to H$ there is associated a homomorphism of the character groups $\phi^*:X(H)\to X(G)$. Here the correspondence $G\mapsto X(G)$, $\phi\mapsto\phi^*$, is a contravariant functor from the category of topological groups into the category of Abelian topological groups. If the category is restricted to locally compact Abelian groups $G$, then this functor determines an equivalence of that category and its dual category (see Pontryagin duality).

The character group of an algebraic group $G$ over a field $K$ is the group $X(G)$ of all rational characters $\def\G{\mathbb{G}}G\to K^* = \G_m$. If $X(G)$ is an Abelian affine algebraic group, then $K[G]$ generates the space $G$ (that is, is a basis in this space) if and only if $G$ is a diagonalizable algebraic group, i.e. is isomorphic to a closed subgroup of a certain algebraic torus $\G_m^s$. Here $X(G)$ is a finitely generated Abelian group (without $p$-torsion if $\def\char{\textrm{char}\;}\char K = p > 0$), and $K[G]$ is the group algebra of $X(G) $ over $K$, which makes it possible to define a duality between the categories of diagonalizable groups and that of finitely generated Abelian groups (without $p$-torsion if $\char K = p > 0$), cf. [Bo]. When $G$ is a finite group (regarded as a $0$-dimensional algebraic group) and $\char K = 0$, then this duality is the same as the classical duality of finite Abelian groups.

For any connected algebraic group $G$, the group $X(G) $ is torsion free. In particular, a diagonalizable group $G$ is a torus if and only if $X(G)\simeq \Z^s$.


An Abelian group is reduced if it contains no non-trivial divisible subgroups.

Above, the phrase "character" is of course strictly used in its narrowest meaning of a (continuous) homomorphism $G\to T$ and not in the sense of the character of some representation.

The character groups of many locally Abelian groups can be found in [HeRo].


[Bo] A. Borel, "Linear algebraic groups", Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[Bo2] N. Bourbaki, "Elements of mathematics. Spectral theories", Addison-Wesley (1977) (Translated from French) MR0583191 Zbl 1106.46004
[Fu] L. Fuchs, "Infinite abelian groups", 1, Acad. Press (1970) MR0255673 Zbl 0209.05503
[HeRo] E. Hewitt, K.A. Ross, "Abstract harmonic analysis", 1, Springer (1963) MR0156915 Zbl 0115.10603
[Hu] J.E. Humphreys, "Linear algebraic groups", Springer (1975) MR0396773 Zbl 0325.20039
[Mo] S.A. Morris, "Pontryagin duality and the structure of locally compact Abelian groups", London Math. Soc. Lecture Notes, 29, Cambridge Univ. Press (1977) MR0442141 Zbl 0446.22006
[Po] L.S. Pontryagin, "Topological groups", Princeton Univ. Press (1958) (Translated from Russian) MR0201557 Zbl 0022.17104
How to Cite This Entry:
Character group. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article