|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | The order of an algebraic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700401.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700402.png" /> is a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700403.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700404.png" />, is the highest degree of the terms of this polynomial. For instance, the ellipse <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700405.png" /> is a curve of order two, and the lemniscate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700406.png" /> is a curve of order four (cf. [[Algebraic curve|Algebraic curve]]).
| + | <!-- |
| + | o0700401.png |
| + | $#A+1 = 182 n = 0 |
| + | $#C+1 = 182 : ~/encyclopedia/old_files/data/O070/O.0700040 Order |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The order of an infinitesimal quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700407.png" /> with respect to an infinitesimal quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700408.png" /> is (if it exists) the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o0700409.png" /> such that the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004010.png" /> exists and is not infinite or equal to zero. For instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004011.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004012.png" /> is an infinitesimal of order two with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004013.png" /> since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004014.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004015.png" /> is an infinitesimal of higher order than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004016.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004017.png" />, and of lower order than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004018.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004019.png" />. Analogously one can define the orders of infinitely large quantities (cf. [[Infinitesimal calculus|Infinitesimal calculus]]).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The order of a zero (respectively, a pole) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004020.png" /> of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004021.png" /> is the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004022.png" /> such that the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004023.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004024.png" />) exists and is not infinite or equal to zero (cf. e.g. [[Analytic function|Analytic function]]; [[Meromorphic function|Meromorphic function]]; [[Pole (of a function)|Pole (of a function)]]; [[Rational function|Rational function]]). | + | The order of an algebraic curve $ F ( x , y ) = 0 $, |
| + | where $ F ( x , y ) $ |
| + | is a polynomial in $ x $ |
| + | and $ y $, |
| + | is the highest degree of the terms of this polynomial. For instance, the ellipse $ x ^ {2} / a ^ {2} + y ^ {2} / b ^ {2} = 1 $ |
| + | is a curve of order two, and the lemniscate $ ( x ^ {2} + y ^ {2} ) ^ {2} = a ^ {2} ( x ^ {2} - y ^ {2} ) $ |
| + | is a curve of order four (cf. [[Algebraic curve|Algebraic curve]]). |
| | | |
− | The order of a derivative is the number of times one has to differentiate a function to obtain this derivative. For instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004025.png" /> is a derivative of order two, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004026.png" /> is a derivative of order four. Similarly the order of a differential is defined (cf. [[Differential calculus|Differential calculus]]). | + | The order of an infinitesimal quantity $ \alpha $ |
| + | with respect to an infinitesimal quantity $ \beta $ |
| + | is (if it exists) the number $ n $ |
| + | such that the limit $ \lim\limits \alpha / \beta ^ {n} $ |
| + | exists and is not infinite or equal to zero. For instance, $ \sin ^ {2} 3 x $ |
| + | as $ x \rightarrow 0 $ |
| + | is an infinitesimal of order two with respect to $ x $ |
| + | since $ \lim\limits _ {x \rightarrow 0 } ( \sin ^ {2} ( 3 x ) / x ^ {2} ) = 9 $. |
| + | One says that $ \alpha $ |
| + | is an infinitesimal of higher order than $ \beta $ |
| + | if $ \lim\limits \alpha / \beta = 0 $, |
| + | and of lower order than $ \beta $ |
| + | if $ \lim\limits \alpha / \beta = \infty $. |
| + | Analogously one can define the orders of infinitely large quantities (cf. [[Infinitesimal calculus|Infinitesimal calculus]]). |
| | | |
− | The order of a differential equation is the highest order of the derivatives in it. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004027.png" /> is an equation of order three, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004028.png" /> is an equation of order two (cf. [[Differential equation, ordinary|Differential equation, ordinary]]). | + | The order of a zero (respectively, a pole) $ a $ |
| + | of a function $ f $ |
| + | is the number $ n $ |
| + | such that the limit $ \lim\limits _ {x \rightarrow a } f ( x) / ( x - a ) ^ {n} $ (respectively, $ \lim\limits ( x - a ) ^ {n} f ( x) $) |
| + | exists and is not infinite or equal to zero (cf. e.g. [[Analytic function|Analytic function]]; [[Meromorphic function|Meromorphic function]]; [[Pole (of a function)|Pole (of a function)]]; [[Rational function|Rational function]]). |
| | | |
− | The order of a square matrix is the number of its rows or columns (cf. [[Matrix|Matrix]]). | + | The order of a derivative is the number of times one has to differentiate a function to obtain this derivative. For instance, $ y ^ {\prime\prime} $ |
| + | is a derivative of order two, $ \partial ^ {4} z / \partial ^ {2} x \partial ^ {2} y $ |
| + | is a derivative of order four. Similarly the order of a differential is defined (cf. [[Differential calculus|Differential calculus]]). |
| | | |
− | The order of a finite group is the number of elements in the group (cf. [[Finite group|Finite group]]). If the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004029.png" /> is infinite, one says that it is a group of infinite order. One should not confuse the order of a group with an order on a group (see [[Ordered group|Ordered group]]; [[Partially ordered group|Partially ordered group]]). | + | The order of a differential equation is the highest order of the derivatives in it. For example, $ y ^ {\prime\prime\prime} y ^ \prime - ( y ^ {\prime\prime} ) ^ {2} = 1 $ |
| + | is an equation of order three, $ y ^ {\prime\prime} - 3 y ^ \prime + y = 0 $ |
| + | is an equation of order two (cf. [[Differential equation, ordinary|Differential equation, ordinary]]). |
| | | |
− | The order of an element of a group is the positive integer equal to the number of elements of the cyclic subgroup generated by this element, or to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004030.png" /> if this subgroup is infinite (cf. also [[Cyclic group|Cyclic group]]). In the last case the element is of infinite order. If the order of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004031.png" /> is finite and equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004033.png" /> is the least among the numbers for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004034.png" />. | + | The order of a square matrix is the number of its rows or columns (cf. [[Matrix|Matrix]]). |
| | | |
− | A right order in a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004035.png" /> is a subring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004036.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004037.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004038.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004039.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004040.png" /> is invertible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004042.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004043.png" /> is a subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004044.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004045.png" /> is a classical right ring of fractions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004046.png" /> (see [[Fractions, ring of|Fractions, ring of]]).
| + | The order of a finite group is the number of elements in the group (cf. [[Finite group|Finite group]]). If the group $ G $ |
| + | is infinite, one says that it is a group of infinite order. One should not confuse the order of a group with an order on a group (see [[Ordered group|Ordered group]]; [[Partially ordered group|Partially ordered group]]). |
| | | |
− | If in some studies or calculations all powers starting with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004047.png" />-st of some small quantity are neglected, one says that this study or calculation is carried out up to quantities of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004048.png" />. For example, in studies of small oscillations of a string the terms with second and higher degrees of deflection and its derivatives are neglected, as a result one obtains a linear equation (linearization of the problem).
| + | The order of an element of a group is the positive integer equal to the number of elements of the cyclic subgroup generated by this element, or to $ \infty $ |
| + | if this subgroup is infinite (cf. also [[Cyclic group|Cyclic group]]). In the last case the element is of infinite order. If the order of an element $ a $ |
| + | is finite and equal to $ n $, |
| + | then $ n $ |
| + | is the least among the numbers for which $ a ^ {n} = 1 $. |
| | | |
− | The word "order" is also used in the calculus of differences (differences of different order, cf. [[Finite-difference calculus|Finite-difference calculus]]), in the theory of many special functions (e.g. [[Cylinder functions|cylinder functions]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004049.png" />), etc.
| + | A right order in a ring $ Q $ |
| + | is a subring $ R $ |
| + | of $ Q $ |
| + | such that for any $ x \in Q $ |
| + | there are $ a , b \in R $ |
| + | such that $ b $ |
| + | is invertible in $ Q $ |
| + | and $ x = ab ^ {-1} $. |
| + | In other words, $ R $ |
| + | is a subring of $ Q $ |
| + | such that $ Q $ |
| + | is a classical right ring of fractions of $ R $ (see [[Fractions, ring of|Fractions, ring of]]). |
| | | |
− | In measurements one speaks about a [[Quantity|quantity]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004050.png" />, which means that it is included between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004052.png" />.
| + | If in some studies or calculations all powers starting with the $ ( n + 1 ) $-st of some small quantity are neglected, one says that this study or calculation is carried out up to quantities of order $ n $. |
| + | For example, in studies of small oscillations of a string the terms with second and higher degrees of deflection and its derivatives are neglected, as a result one obtains a linear equation (linearization of the problem). |
| | | |
| + | The word "order" is also used in the calculus of differences (differences of different order, cf. [[Finite-difference calculus|Finite-difference calculus]]), in the theory of many special functions (e.g. [[Cylinder functions|cylinder functions]] of order $ n $), |
| + | etc. |
| | | |
| + | In measurements one speaks about a [[Quantity|quantity]] of order $ 10 ^ {n} $, |
| + | which means that it is included between $ 0. 5 \cdot 10 ^ {n} $ |
| + | and $ 5 \cdot 10 ^ {n} $. |
| | | |
| ====Comments==== | | ====Comments==== |
| The above does not exhaust the many meanings in which the word "order" is used in mathematics. | | The above does not exhaust the many meanings in which the word "order" is used in mathematics. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004053.png" /> is a balanced incomplete block design, or design with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004058.png" /> (see [[Block design|Block design]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004059.png" /> is called the order of the design. | + | If $ ( V, B) $ |
| + | is a balanced incomplete block design, or design with parameters $ v $, |
| + | $ b $, |
| + | $ r $, |
| + | $ k $, |
| + | $ \lambda $ (see [[Block design|Block design]]), then $ n = r - \lambda $ |
| + | is called the order of the design. |
| + | |
| + | A finite projective plane is of order $ k $ |
| + | if each line has precisely $ k+ 1 $ |
| + | points (and there are (hence) precisely $ k ^ {2} + k + 1 $ |
| + | points and $ k ^ {2} + k+ 1 $ |
| + | lines). |
| | | |
− | A finite projective plane is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004060.png" /> if each line has precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004061.png" /> points (and there are (hence) precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004062.png" /> points and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004063.png" /> lines). | + | Let $ \mathfrak M = \{ M _ \lambda \} _ {\lambda \in \Lambda } $, |
| + | $ M _ \lambda \subset S $, |
| + | be a covering of a subset $ A \subset S $, |
| + | i.e. $ A \subset \cup _ \lambda M _ \lambda $. |
| + | The covering is said to be of order $ k $ |
| + | if $ k $ |
| + | is the least integer such that any subfamily of $ \mathfrak M $ |
| + | consisting of $ k+ 1 $ |
| + | elements has empty intersection. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004065.png" />, be a covering of a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004066.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004067.png" />. The covering is said to be of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004068.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004069.png" /> is the least integer such that any subfamily of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004070.png" /> consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004071.png" /> elements has empty intersection. | + | Let $ f( z) $ |
| + | be a transcendental entire function (cf. [[Entire function|Entire function]]). For each real number $ r > 0 $, |
| + | let $ M( r) = \max _ {| z| = r } | f( z) | $. |
| + | Then the order of the transcendental entire function $ f( z) $ |
| + | is defined as |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004072.png" /> be a transcendental entire function (cf. [[Entire function|Entire function]]). For each real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004073.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004074.png" />. Then the order of the transcendental entire function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004075.png" /> is defined as
| + | $$ |
| + | \rho = {\lim\limits \sup } _ {r \rightarrow \infty } \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004076.png" /></td> </tr></table>
| + | \frac{ \mathop{\rm log} \mathop{\rm log} M( r) }{ \mathop{\rm log} r } |
| + | . |
| + | $$ |
| | | |
− | The function is called of finite order if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004077.png" /> is finite and of infinite order otherwise. | + | The function is called of finite order if $ \rho $ |
| + | is finite and of infinite order otherwise. |
| | | |
| The order of an elliptic function is the number of times it takes each value in its period parallelogram, cf. [[Elliptic function|Elliptic function]]. | | The order of an elliptic function is the number of times it takes each value in its period parallelogram, cf. [[Elliptic function|Elliptic function]]. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004078.png" /> be a [[Meromorphic function|meromorphic function]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004079.png" />. For each possible value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004080.png" />, including <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004081.png" />, let | + | Let $ f( z) $ |
| + | be a [[Meromorphic function|meromorphic function]] in $ | z | < R \leq \infty $. |
| + | For each possible value $ \alpha $, |
| + | including $ \infty $, |
| + | let |
| + | |
| + | $$ |
| + | N( r , \alpha ) = \int\limits _ { 0 } ^ { r } |
| + | |
| + | \frac{n( t, \alpha ) - n( 0 , \alpha ) }{t} |
| + | \ |
| + | dt + n( 0 , \alpha ) \mathop{\rm log} r , |
| + | $$ |
| + | |
| + | $$ |
| + | m( r, \alpha ) = |
| + | \frac{1}{2 \pi } |
| + | \int\limits _ { 0 } ^ { {2 } \pi } \mathrm{log} ^ {+} |
| + | \left | |
| + | \frac{1}{f( re ^ {i \theta } ) - \alpha } |
| + | \ |
| + | \right | d \theta \ \textrm{ if } \alpha \neq \infty , |
| + | $$ |
| + | |
| + | $$ |
| + | m( r, \infty ) = |
| + | \frac{1}{2 \pi } |
| + | \int\limits _ { 0 } ^ { {2 } \pi } |
| + | \mathrm{log} ^ {+} | f( re ^ {i \theta } ) | d \theta , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004082.png" /></td> </tr></table>
| + | where $ n( r, \alpha ) $ |
| + | is the number of $ \alpha $-points of $ f( z) $ |
| + | in $ | z | \leq r $, |
| + | i.e. the points with $ f( z) = \alpha $, |
| + | counted with multiplicity. The functions $ N $ |
| + | and $ m $ |
| + | are called the counting function and proximity function, respectively. The function $ T( r) = m( r, \infty ) + N( r, \infty ) $ |
| + | is called the order function or characteristic function of $ f( z) $. |
| + | One has $ T( r) = m( r, \alpha ) + N( r, \alpha ) + O( 1) $ (Nevanlinna's first theorem), as $ r \rightarrow \infty $, |
| + | for all $ \alpha $. |
| + | One has also |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004083.png" /></td> </tr></table>
| + | $$ |
| + | {\lim\limits \sup } _ {r \rightarrow \infty } \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004084.png" /></td> </tr></table>
| + | \frac{ \mathop{\rm log} T( r) }{ \mathop{\rm log} r } |
| + | = \ |
| + | {\lim\limits \sup } _ {r \rightarrow \infty } \ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004085.png" /> is the number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004087.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004088.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004089.png" />, i.e. the points with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004090.png" />, counted with multiplicity. The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004091.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004092.png" /> are called the counting function and proximity function, respectively. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004093.png" /> is called the order function or characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004094.png" />. One has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004095.png" /> (Nevanlinna's first theorem), as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004096.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004097.png" />. One has also
| + | \frac{ \mathop{\rm log} \mathop{\rm log} M( r) }{ \mathop{\rm log} r } |
| + | , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004098.png" /></td> </tr></table>
| + | where, as in 16) above, $ M( r) = \max _ {| z| = r } | f( z) | $. |
| + | The order of the meromorphic function $ f( z) $ |
| + | is defined as $ {\lim\limits \sup } _ {r \rightarrow \infty } ( \mathop{\rm log} r ) ^ {-1} \mathop{\rm log} T( r) $. |
| | | |
− | where, as in 16) above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o07004099.png" />. The order of the meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040100.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040101.png" />.
| + | The $ k $-th order modulus of continuity of a continuous function $ f $ |
| + | on $ [ a, b] $ |
| + | is defined by |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040103.png" />-th order modulus of continuity of a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040104.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040105.png" /> is defined by
| + | $$ |
| + | \omega _ {k} ( f; t) = \sup _ { |
| + | {\begin{array}{c} |
| + | {| h| \leq t } \\ |
| + | {a \leq x \leq b } \\ |
| + | {a \leq x+ kh \leq b } |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040106.png" /></td> </tr></table>
| + | } } \ |
| + | \left | \sum _ { i= 0} ^ { k } (- 1) ^ {k-i} |
| + | \left ( \begin{array}{c} |
| + | k \\ |
| + | i |
| + | \end{array} |
| + | \right ) f( x+ ih) \right | . |
| + | $$ |
| | | |
| See also [[Continuity, modulus of|Continuity, modulus of]]; [[Smoothness, modulus of|Smoothness, modulus of]]. | | See also [[Continuity, modulus of|Continuity, modulus of]]; [[Smoothness, modulus of|Smoothness, modulus of]]. |
| | | |
− | Consider a system of ordinary differential equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040107.png" /> on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040108.png" /> and a numerical solution method which calculates the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040109.png" /> at mesh points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040110.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040111.png" /> is the stepsize. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040112.png" /> be the calculated value at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040113.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040115.png" /> the "true value" , <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040116.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040117.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040118.png" />, then the solution process is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040119.png" />. | + | Consider a system of ordinary differential equations $ {dy ^ {i} } / dx = f ^ { i } ( x, y ^ {1} ( x) \dots y ^ {n} ( x)) $ |
| + | on an interval $ [ a, b] $ |
| + | and a numerical solution method which calculates the $ y ^ {i} $ |
| + | at mesh points $ x _ {k} = a+ kh $, |
| + | so that $ h $ |
| + | is the stepsize. Let $ y _ {k} ^ {i} $ |
| + | be the calculated value at $ x _ {k} $ |
| + | of $ y ^ {i} $, |
| + | $ y ^ {i} ( x _ {k} ) $ |
| + | the "true value" , $ e _ {k} ^ {i} = y _ {k} ^ {i} - y ^ {i} ( x _ {k} ) $. |
| + | If $ e _ {k} ^ {i} = O( h ^ {r} ) $ |
| + | as $ h \rightarrow 0 $, |
| + | then the solution process is of order $ r $. |
| | | |
− | Consider an ordinary curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040120.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040121.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040122.png" /> is the union of a finite number of simple arcs meeting at a finite number of points. For a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040123.png" /> the boundary of a sufficiently small neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040124.png" /> meets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040125.png" /> at a finite number of points, which is independent of the neighbourhood. This number is called the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040126.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040127.png" />. A point of order 1 is an end point, one of order 2 an ordinary point, and one of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040128.png" /> a branch point. | + | Consider an ordinary curve $ C $ |
| + | in $ E ^ {2} $, |
| + | i.e. $ C $ |
| + | is the union of a finite number of simple arcs meeting at a finite number of points. For a point $ p \in C $ |
| + | the boundary of a sufficiently small neighbourhood of $ p $ |
| + | meets $ C $ |
| + | at a finite number of points, which is independent of the neighbourhood. This number is called the order of $ p $ |
| + | on $ C $. |
| + | A point of order 1 is an end point, one of order 2 an ordinary point, and one of order $ \geq 3 $ |
| + | a branch point. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040129.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040130.png" />-dimensional manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040131.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040132.png" />-dimensional cycle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040133.png" /> which is a boundary. The [[Linking coefficient|linking coefficient]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040134.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040135.png" /> not in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040136.png" />, the underlying space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040137.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040138.png" /> is called the order of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040139.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040140.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040141.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040142.png" /> a closed curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040143.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040144.png" />, this is the [[Rotation number|rotation number]] around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040145.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040146.png" />. | + | Let $ M ^ {n} $ |
| + | be an $ n $-dimensional manifold and $ Z ^ {n-1} $ |
| + | an $ ( n - 1) $-dimensional cycle in $ M ^ {n} $ |
| + | which is a boundary. The [[Linking coefficient|linking coefficient]] $ \mathop{\rm Lk} ( P, Z ^ {n-1} ) $ |
| + | of a point $ P $ |
| + | not in $ | Z ^ {n-1} | $, |
| + | the underlying space of $ Z ^ {n-1} $, |
| + | with $ Z ^ {n-1} $ |
| + | is called the order of the point $ P $ |
| + | with respect to $ Z ^ {n-1} $. |
| + | In the case $ M ^ {n} = \mathbf R ^ {2} $, |
| + | and $ Z ^ {n-1} $ |
| + | a closed curve $ \{ {f( t) } : {0 \leq t \leq t } \} $, |
| + | $ f( 0) = f( 1) $, |
| + | this is the [[Rotation number|rotation number]] around $ P $ |
| + | of $ f $. |
| | | |
| The word "order" also occurs as a synonym for an order relation on a set, or an ordering (cf. also [[Order (on a set)|Order (on a set)]]). | | The word "order" also occurs as a synonym for an order relation on a set, or an ordering (cf. also [[Order (on a set)|Order (on a set)]]). |
| | | |
− | For the concept of order of magnitude of a function at a point (including <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040147.png" />) and related concepts cf. [[Order relation|Order relation]]. | + | For the concept of order of magnitude of a function at a point (including $ \infty $) |
| + | and related concepts cf. [[Order relation|Order relation]]. |
| + | |
| + | Consider a [[Dirichlet series|Dirichlet series]] $ f( z) = \sum _ {n=1} ^ \infty a _ {n} \mathop{\rm exp} (- \lambda _ {n} z) $, |
| + | and let $ S $ |
| + | be the abscissa of convergence of $ f $. |
| + | I.e. the series converges for $ \mathop{\rm Re} ( z) > S $ |
| + | and diverges for $ \mathop{\rm Re} ( z) < S $. |
| + | If $ x = \mathop{\rm Re} ( z) > S $, |
| + | then $ f( z) = o(| y |) $ |
| + | as $ | y | \rightarrow \infty $. |
| + | In his thesis, H. Bohr introduced |
| | | |
− | Consider a [[Dirichlet series|Dirichlet series]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040148.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040149.png" /> be the abscissa of convergence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040150.png" />. I.e. the series converges for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040151.png" /> and diverges for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040152.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040153.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040154.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040155.png" />. In his thesis, H. Bohr introduced
| + | $$ |
| + | \mu ( x) = {\lim\limits \sup } _ {| y| \rightarrow \infty } \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040156.png" /></td> </tr></table>
| + | \frac{ \mathop{\rm log} | f( x+ iy) | }{ \mathop{\rm log} | y | } |
| + | , |
| + | $$ |
| | | |
− | and called it the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040157.png" /> over the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040158.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040159.png" /> is non-negative, convex, continuous, and monotone decreasing. Bohr found that there is a kind of periodicity for the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040160.png" /> over this line; this started the theory of almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). | + | and called it the order of $ f $ |
| + | over the line $ \mathop{\rm Re} ( z) = x $. |
| + | The function $ \mu ( x) $ |
| + | is non-negative, convex, continuous, and monotone decreasing. Bohr found that there is a kind of periodicity for the values of $ f $ |
| + | over this line; this started the theory of almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040161.png" /> be a Dedekind domain, i.e. a (not necessarily commutative) integral domain in which every ideal is uniquely decomposed into prime ideals (cf. also [[Dedekind ring|Dedekind ring]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040162.png" /> be a separable algebra of finite degree over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040163.png" />, the quotient field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040164.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040165.png" />-lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040166.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040167.png" /> is a finitely-generated submodule (over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040168.png" />) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040169.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040170.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040171.png" />-lattice that is a subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040172.png" /> and which contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040173.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040175.png" />-order. A maximal order is one that is not contained in any order. Such a maximal order always exists. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040176.png" /> is commutative it is unique. | + | Let $ A $ |
| + | be a Dedekind domain, i.e. a (not necessarily commutative) integral domain in which every ideal is uniquely decomposed into prime ideals (cf. also [[Dedekind ring|Dedekind ring]]). Let $ B $ |
| + | be a separable algebra of finite degree over $ F $, |
| + | the quotient field of $ A $. |
| + | An $ A $-lattice $ L $ |
| + | in $ B $ |
| + | is a finitely-generated submodule (over $ A $) |
| + | of $ B $ |
| + | such that $ FL = B $. |
| + | An $ A $-lattice that is a subring of $ B $ |
| + | and which contains $ A $ |
| + | is called an $ A $-order. A maximal order is one that is not contained in any order. Such a maximal order always exists. If $ B $ |
| + | is commutative it is unique. |
| | | |
− | In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040177.png" /> is a global or local field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040178.png" /> its ring of integers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040179.png" /> a finite field extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040180.png" />, the maximal order is the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040181.png" />, which is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040182.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040183.png" /> (cf. [[Integral extension of a ring|Integral extension of a ring]]). It is also called the principal order. | + | In the case $ F $ |
| + | is a global or local field, $ A $ |
| + | its ring of integers, $ B $ |
| + | a finite field extension of $ F $, |
| + | the maximal order is the ring of integers of $ B $, |
| + | which is the integral closure of $ A $ |
| + | in $ B $ (cf. [[Integral extension of a ring|Integral extension of a ring]]). It is also called the principal order. |
| | | |
− | In some, mainly physics literature, one speaks of the order of a Lie group as the number of parameters needed to parametrize it, i.e. the order of the Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040184.png" /> in this sense is the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070040/o070040185.png" /> (cf. also [[Lie group|Lie group]]). | + | In some, mainly physics literature, one speaks of the order of a Lie group as the number of parameters needed to parametrize it, i.e. the order of the Lie group $ G $ |
| + | in this sense is the dimension of $ G $ (cf. also [[Lie group|Lie group]]). |
| | | |
| For references see the various articles directly or indirectly referred to. | | For references see the various articles directly or indirectly referred to. |
The order of an algebraic curve $ F ( x , y ) = 0 $,
where $ F ( x , y ) $
is a polynomial in $ x $
and $ y $,
is the highest degree of the terms of this polynomial. For instance, the ellipse $ x ^ {2} / a ^ {2} + y ^ {2} / b ^ {2} = 1 $
is a curve of order two, and the lemniscate $ ( x ^ {2} + y ^ {2} ) ^ {2} = a ^ {2} ( x ^ {2} - y ^ {2} ) $
is a curve of order four (cf. Algebraic curve).
The order of an infinitesimal quantity $ \alpha $
with respect to an infinitesimal quantity $ \beta $
is (if it exists) the number $ n $
such that the limit $ \lim\limits \alpha / \beta ^ {n} $
exists and is not infinite or equal to zero. For instance, $ \sin ^ {2} 3 x $
as $ x \rightarrow 0 $
is an infinitesimal of order two with respect to $ x $
since $ \lim\limits _ {x \rightarrow 0 } ( \sin ^ {2} ( 3 x ) / x ^ {2} ) = 9 $.
One says that $ \alpha $
is an infinitesimal of higher order than $ \beta $
if $ \lim\limits \alpha / \beta = 0 $,
and of lower order than $ \beta $
if $ \lim\limits \alpha / \beta = \infty $.
Analogously one can define the orders of infinitely large quantities (cf. Infinitesimal calculus).
The order of a zero (respectively, a pole) $ a $
of a function $ f $
is the number $ n $
such that the limit $ \lim\limits _ {x \rightarrow a } f ( x) / ( x - a ) ^ {n} $ (respectively, $ \lim\limits ( x - a ) ^ {n} f ( x) $)
exists and is not infinite or equal to zero (cf. e.g. Analytic function; Meromorphic function; Pole (of a function); Rational function).
The order of a derivative is the number of times one has to differentiate a function to obtain this derivative. For instance, $ y ^ {\prime\prime} $
is a derivative of order two, $ \partial ^ {4} z / \partial ^ {2} x \partial ^ {2} y $
is a derivative of order four. Similarly the order of a differential is defined (cf. Differential calculus).
The order of a differential equation is the highest order of the derivatives in it. For example, $ y ^ {\prime\prime\prime} y ^ \prime - ( y ^ {\prime\prime} ) ^ {2} = 1 $
is an equation of order three, $ y ^ {\prime\prime} - 3 y ^ \prime + y = 0 $
is an equation of order two (cf. Differential equation, ordinary).
The order of a square matrix is the number of its rows or columns (cf. Matrix).
The order of a finite group is the number of elements in the group (cf. Finite group). If the group $ G $
is infinite, one says that it is a group of infinite order. One should not confuse the order of a group with an order on a group (see Ordered group; Partially ordered group).
The order of an element of a group is the positive integer equal to the number of elements of the cyclic subgroup generated by this element, or to $ \infty $
if this subgroup is infinite (cf. also Cyclic group). In the last case the element is of infinite order. If the order of an element $ a $
is finite and equal to $ n $,
then $ n $
is the least among the numbers for which $ a ^ {n} = 1 $.
A right order in a ring $ Q $
is a subring $ R $
of $ Q $
such that for any $ x \in Q $
there are $ a , b \in R $
such that $ b $
is invertible in $ Q $
and $ x = ab ^ {-1} $.
In other words, $ R $
is a subring of $ Q $
such that $ Q $
is a classical right ring of fractions of $ R $ (see Fractions, ring of).
If in some studies or calculations all powers starting with the $ ( n + 1 ) $-st of some small quantity are neglected, one says that this study or calculation is carried out up to quantities of order $ n $.
For example, in studies of small oscillations of a string the terms with second and higher degrees of deflection and its derivatives are neglected, as a result one obtains a linear equation (linearization of the problem).
The word "order" is also used in the calculus of differences (differences of different order, cf. Finite-difference calculus), in the theory of many special functions (e.g. cylinder functions of order $ n $),
etc.
In measurements one speaks about a quantity of order $ 10 ^ {n} $,
which means that it is included between $ 0. 5 \cdot 10 ^ {n} $
and $ 5 \cdot 10 ^ {n} $.
The above does not exhaust the many meanings in which the word "order" is used in mathematics.
If $ ( V, B) $
is a balanced incomplete block design, or design with parameters $ v $,
$ b $,
$ r $,
$ k $,
$ \lambda $ (see Block design), then $ n = r - \lambda $
is called the order of the design.
A finite projective plane is of order $ k $
if each line has precisely $ k+ 1 $
points (and there are (hence) precisely $ k ^ {2} + k + 1 $
points and $ k ^ {2} + k+ 1 $
lines).
Let $ \mathfrak M = \{ M _ \lambda \} _ {\lambda \in \Lambda } $,
$ M _ \lambda \subset S $,
be a covering of a subset $ A \subset S $,
i.e. $ A \subset \cup _ \lambda M _ \lambda $.
The covering is said to be of order $ k $
if $ k $
is the least integer such that any subfamily of $ \mathfrak M $
consisting of $ k+ 1 $
elements has empty intersection.
Let $ f( z) $
be a transcendental entire function (cf. Entire function). For each real number $ r > 0 $,
let $ M( r) = \max _ {| z| = r } | f( z) | $.
Then the order of the transcendental entire function $ f( z) $
is defined as
$$
\rho = {\lim\limits \sup } _ {r \rightarrow \infty } \
\frac{ \mathop{\rm log} \mathop{\rm log} M( r) }{ \mathop{\rm log} r }
.
$$
The function is called of finite order if $ \rho $
is finite and of infinite order otherwise.
The order of an elliptic function is the number of times it takes each value in its period parallelogram, cf. Elliptic function.
Let $ f( z) $
be a meromorphic function in $ | z | < R \leq \infty $.
For each possible value $ \alpha $,
including $ \infty $,
let
$$
N( r , \alpha ) = \int\limits _ { 0 } ^ { r }
\frac{n( t, \alpha ) - n( 0 , \alpha ) }{t}
\
dt + n( 0 , \alpha ) \mathop{\rm log} r ,
$$
$$
m( r, \alpha ) =
\frac{1}{2 \pi }
\int\limits _ { 0 } ^ { {2 } \pi } \mathrm{log} ^ {+}
\left |
\frac{1}{f( re ^ {i \theta } ) - \alpha }
\
\right | d \theta \ \textrm{ if } \alpha \neq \infty ,
$$
$$
m( r, \infty ) =
\frac{1}{2 \pi }
\int\limits _ { 0 } ^ { {2 } \pi }
\mathrm{log} ^ {+} | f( re ^ {i \theta } ) | d \theta ,
$$
where $ n( r, \alpha ) $
is the number of $ \alpha $-points of $ f( z) $
in $ | z | \leq r $,
i.e. the points with $ f( z) = \alpha $,
counted with multiplicity. The functions $ N $
and $ m $
are called the counting function and proximity function, respectively. The function $ T( r) = m( r, \infty ) + N( r, \infty ) $
is called the order function or characteristic function of $ f( z) $.
One has $ T( r) = m( r, \alpha ) + N( r, \alpha ) + O( 1) $ (Nevanlinna's first theorem), as $ r \rightarrow \infty $,
for all $ \alpha $.
One has also
$$
{\lim\limits \sup } _ {r \rightarrow \infty } \
\frac{ \mathop{\rm log} T( r) }{ \mathop{\rm log} r }
= \
{\lim\limits \sup } _ {r \rightarrow \infty } \
\frac{ \mathop{\rm log} \mathop{\rm log} M( r) }{ \mathop{\rm log} r }
,
$$
where, as in 16) above, $ M( r) = \max _ {| z| = r } | f( z) | $.
The order of the meromorphic function $ f( z) $
is defined as $ {\lim\limits \sup } _ {r \rightarrow \infty } ( \mathop{\rm log} r ) ^ {-1} \mathop{\rm log} T( r) $.
The $ k $-th order modulus of continuity of a continuous function $ f $
on $ [ a, b] $
is defined by
$$
\omega _ {k} ( f; t) = \sup _ {
{\begin{array}{c}
{| h| \leq t } \\
{a \leq x \leq b } \\
{a \leq x+ kh \leq b }
\end{array}
} } \
\left | \sum _ { i= 0} ^ { k } (- 1) ^ {k-i}
\left ( \begin{array}{c}
k \\
i
\end{array}
\right ) f( x+ ih) \right | .
$$
See also Continuity, modulus of; Smoothness, modulus of.
Consider a system of ordinary differential equations $ {dy ^ {i} } / dx = f ^ { i } ( x, y ^ {1} ( x) \dots y ^ {n} ( x)) $
on an interval $ [ a, b] $
and a numerical solution method which calculates the $ y ^ {i} $
at mesh points $ x _ {k} = a+ kh $,
so that $ h $
is the stepsize. Let $ y _ {k} ^ {i} $
be the calculated value at $ x _ {k} $
of $ y ^ {i} $,
$ y ^ {i} ( x _ {k} ) $
the "true value" , $ e _ {k} ^ {i} = y _ {k} ^ {i} - y ^ {i} ( x _ {k} ) $.
If $ e _ {k} ^ {i} = O( h ^ {r} ) $
as $ h \rightarrow 0 $,
then the solution process is of order $ r $.
Consider an ordinary curve $ C $
in $ E ^ {2} $,
i.e. $ C $
is the union of a finite number of simple arcs meeting at a finite number of points. For a point $ p \in C $
the boundary of a sufficiently small neighbourhood of $ p $
meets $ C $
at a finite number of points, which is independent of the neighbourhood. This number is called the order of $ p $
on $ C $.
A point of order 1 is an end point, one of order 2 an ordinary point, and one of order $ \geq 3 $
a branch point.
Let $ M ^ {n} $
be an $ n $-dimensional manifold and $ Z ^ {n-1} $
an $ ( n - 1) $-dimensional cycle in $ M ^ {n} $
which is a boundary. The linking coefficient $ \mathop{\rm Lk} ( P, Z ^ {n-1} ) $
of a point $ P $
not in $ | Z ^ {n-1} | $,
the underlying space of $ Z ^ {n-1} $,
with $ Z ^ {n-1} $
is called the order of the point $ P $
with respect to $ Z ^ {n-1} $.
In the case $ M ^ {n} = \mathbf R ^ {2} $,
and $ Z ^ {n-1} $
a closed curve $ \{ {f( t) } : {0 \leq t \leq t } \} $,
$ f( 0) = f( 1) $,
this is the rotation number around $ P $
of $ f $.
The word "order" also occurs as a synonym for an order relation on a set, or an ordering (cf. also Order (on a set)).
For the concept of order of magnitude of a function at a point (including $ \infty $)
and related concepts cf. Order relation.
Consider a Dirichlet series $ f( z) = \sum _ {n=1} ^ \infty a _ {n} \mathop{\rm exp} (- \lambda _ {n} z) $,
and let $ S $
be the abscissa of convergence of $ f $.
I.e. the series converges for $ \mathop{\rm Re} ( z) > S $
and diverges for $ \mathop{\rm Re} ( z) < S $.
If $ x = \mathop{\rm Re} ( z) > S $,
then $ f( z) = o(| y |) $
as $ | y | \rightarrow \infty $.
In his thesis, H. Bohr introduced
$$
\mu ( x) = {\lim\limits \sup } _ {| y| \rightarrow \infty } \
\frac{ \mathop{\rm log} | f( x+ iy) | }{ \mathop{\rm log} | y | }
,
$$
and called it the order of $ f $
over the line $ \mathop{\rm Re} ( z) = x $.
The function $ \mu ( x) $
is non-negative, convex, continuous, and monotone decreasing. Bohr found that there is a kind of periodicity for the values of $ f $
over this line; this started the theory of almost-periodic functions (cf. Almost-periodic function).
Let $ A $
be a Dedekind domain, i.e. a (not necessarily commutative) integral domain in which every ideal is uniquely decomposed into prime ideals (cf. also Dedekind ring). Let $ B $
be a separable algebra of finite degree over $ F $,
the quotient field of $ A $.
An $ A $-lattice $ L $
in $ B $
is a finitely-generated submodule (over $ A $)
of $ B $
such that $ FL = B $.
An $ A $-lattice that is a subring of $ B $
and which contains $ A $
is called an $ A $-order. A maximal order is one that is not contained in any order. Such a maximal order always exists. If $ B $
is commutative it is unique.
In the case $ F $
is a global or local field, $ A $
its ring of integers, $ B $
a finite field extension of $ F $,
the maximal order is the ring of integers of $ B $,
which is the integral closure of $ A $
in $ B $ (cf. Integral extension of a ring). It is also called the principal order.
In some, mainly physics literature, one speaks of the order of a Lie group as the number of parameters needed to parametrize it, i.e. the order of the Lie group $ G $
in this sense is the dimension of $ G $ (cf. also Lie group).
For references see the various articles directly or indirectly referred to.