Namespaces
Variants
Actions

Difference between revisions of "Isogonal"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎References: zbl link)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 38 formulas, 36 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|part}}
 
Literally  "same angle" . There are several concepts in mathematics involving isogonality.
 
Literally  "same angle" . There are several concepts in mathematics involving isogonality.
  
Line 11: Line 19:
  
 
===Isogonal line.===
 
===Isogonal line.===
Given a triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300801.png" /> and a line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300802.png" /> from one of the vertices, say from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300803.png" />, to the opposite side. The corresponding isogonal line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png" /> is obtained by reflecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300805.png" /> with respect to the [[Bisectrix|bisectrix]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300806.png" />.
+
Given a triangle $A _ { 1 } A _ { 2 } A _ { 3 }$ and a line $L_1$ from one of the vertices, say from $A _ { 1 }$, to the opposite side. The corresponding isogonal line $L _ { 1 } ^ { \prime }$ is obtained by reflecting $L_1$ with respect to the [[Bisectrix|bisectrix]] in $A _ { 1 }$.
  
If the lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300809.png" /> are concurrent (i.e. pass through a single point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008010.png" />, i.e. are [[Cevian lines]]), then so are the isogonal lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png" />. This follows fairly directly from the [[Ceva theorem|Ceva theorem]]. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008014.png" /> is called the isogonal conjugate point. If the [[Barycentric coordinates|barycentric coordinates]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008015.png" /> (often called trilinear coordinates in this setting) are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008016.png" />, then those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008017.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008018.png" />
+
If the lines $L _ { 1 } = A _ { 1 } P _ { 1 }$, $L _ { 2 } = A _ { 2 } P _ { 2 }$ and $L _ { 3 } = A _ { 3 } P _ { 3 }$ are concurrent (i.e. pass through a single point $X$, i.e. are [[Cevian lines]]), then so are the isogonal lines $L _ { 1 } ^ { \prime }$, $L _ { 2 } ^ { \prime }$, $L _ { 3 } ^ { \prime }$. This follows fairly directly from the [[Ceva theorem|Ceva theorem]]. The point $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ is called the isogonal conjugate point. If the [[Barycentric coordinates|barycentric coordinates]] of $X$ (often called trilinear coordinates in this setting) are $( \alpha : \beta : \gamma )$, then those of $X ^ { \prime }$ are $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$
  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080a.gif" />
+
<img src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080a.gif" style="border:1px solid;"/>
  
 
Figure: i130080a
 
Figure: i130080a
  
Another notion in rather the same spirit is that of the isotomic line to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008019.png" />, which is the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008021.png" />. Again it is true that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008024.png" /> are concurrent, then so are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008027.png" />. This follows directly from the [[Ceva theorem|Ceva theorem]].
+
Another notion in rather the same spirit is that of the isotomic line to $L_1$, which is the line $L_1 ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }_1$ such that $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$. Again it is true that if $L_1$, $L_{2}$, $L_3$ are concurrent, then so are $L _ { 1 } ^ { \prime \prime }$, $L _ { 2 } ^ { \prime \prime }$, $L _ { 3 } ^ { \prime \prime }$. This follows directly from the [[Ceva theorem|Ceva theorem]].
  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080b.gif" />
+
<img src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080b.gif" style="border:1px solid;"/>
  
 
Figure: i130080b
 
Figure: i130080b
  
The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008028.png" /> is called the isotomic conjugate point. The barycentric coordinates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008029.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008033.png" /> are the lengths of the sides of the triangle. The [[Gergonne point|Gergonne point]] is the isotomic conjugate of the [[Nagel point|Nagel point]].
+
The point $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ is called the isotomic conjugate point. The barycentric coordinates of $X ^ { \prime \prime }$ are $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$, where $a$, $b$, $c$ are the lengths of the sides of the triangle. The [[Gergonne point|Gergonne point]] is the isotomic conjugate of the [[Nagel point|Nagel point]].
  
The involutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008035.png" />, i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008036.png" />, [[#References|[a4]]].
+
The involutions $X \mapsto X ^ { \prime }$ and $X \mapsto X ^ { \prime \prime }$, i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane $\mathbf{P} ^ { 2 } ( \mathbf{R} )$, [[#References|[a4]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)  pp. 327</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Hilbert,  S. Cohn-Vossen,  "Geometry and the imagination" , Chelsea  (1952)  pp. 249</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.A. Johnson,  "Modern geometry" , Houghton–Mifflin  (1929)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.H. Eddy,  J.B. Wilker,  "Plane mappings of isogonal-isotomic type"  ''Soochow J. Math.'' , '''18''' :  2  (1992)  pp. 135–158</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Altshiller–Court,  "College geometry" , Barnes &amp; Noble  (1952)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  H.S.M. Coxeter,  "The real projective plane" , Springer  (1993)  pp. 197–199  (Edition: Third)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  F. Bachmann,  "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer  (1973)  (Edition: Second)</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)  pp. 327</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  D. Hilbert,  S. Cohn-Vossen,  "Geometry and the imagination" , Chelsea  (1952)  pp. 249</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  R.A. Johnson,  "Modern geometry" , Houghton–Mifflin  (1929)</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  R.H. Eddy,  J.B. Wilker,  "Plane mappings of isogonal-isotomic type"  ''Soochow J. Math.'' , '''18''' :  2  (1992)  pp. 135–158 {{ZBL|0764.51018}}</td></tr>
 +
<tr><td valign="top">[a5]</td> <td valign="top">  N. Altshiller–Court,  "College geometry" , Barnes &amp; Noble  (1952)</td></tr>
 +
<tr><td valign="top">[a6]</td> <td valign="top">  H.S.M. Coxeter,  "The real projective plane" , Springer  (1993)  pp. 197–199  (Edition: Third)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  F. Bachmann,  "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer  (1973)  (Edition: Second)</td></tr>
 +
</table>

Latest revision as of 13:09, 2 April 2023

Literally "same angle" . There are several concepts in mathematics involving isogonality.

Isogonal trajectory.

A trajectory that meets a given family of curves at a constant angle. See Isogonal trajectory.

Isogonal mapping.

A (differentiable) mapping that preserves angles. For instance, the stereographic projection of cartography has this property [a2]. See also Conformal mapping; Anti-conformal mapping.

Isogonal circles.

A circle is said to be isogonal with respect to two other circles if it makes the same angle with these two, [a1].

Isogonal line.

Given a triangle $A _ { 1 } A _ { 2 } A _ { 3 }$ and a line $L_1$ from one of the vertices, say from $A _ { 1 }$, to the opposite side. The corresponding isogonal line $L _ { 1 } ^ { \prime }$ is obtained by reflecting $L_1$ with respect to the bisectrix in $A _ { 1 }$.

If the lines $L _ { 1 } = A _ { 1 } P _ { 1 }$, $L _ { 2 } = A _ { 2 } P _ { 2 }$ and $L _ { 3 } = A _ { 3 } P _ { 3 }$ are concurrent (i.e. pass through a single point $X$, i.e. are Cevian lines), then so are the isogonal lines $L _ { 1 } ^ { \prime }$, $L _ { 2 } ^ { \prime }$, $L _ { 3 } ^ { \prime }$. This follows fairly directly from the Ceva theorem. The point $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ is called the isogonal conjugate point. If the barycentric coordinates of $X$ (often called trilinear coordinates in this setting) are $( \alpha : \beta : \gamma )$, then those of $X ^ { \prime }$ are $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$

Figure: i130080a

Another notion in rather the same spirit is that of the isotomic line to $L_1$, which is the line $L_1 ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }_1$ such that $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$. Again it is true that if $L_1$, $L_{2}$, $L_3$ are concurrent, then so are $L _ { 1 } ^ { \prime \prime }$, $L _ { 2 } ^ { \prime \prime }$, $L _ { 3 } ^ { \prime \prime }$. This follows directly from the Ceva theorem.

Figure: i130080b

The point $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ is called the isotomic conjugate point. The barycentric coordinates of $X ^ { \prime \prime }$ are $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$, where $a$, $b$, $c$ are the lengths of the sides of the triangle. The Gergonne point is the isotomic conjugate of the Nagel point.

The involutions $X \mapsto X ^ { \prime }$ and $X \mapsto X ^ { \prime \prime }$, i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane $\mathbf{P} ^ { 2 } ( \mathbf{R} )$, [a4].

References

[a1] M. Berger, "Geometry" , I , Springer (1987) pp. 327
[a2] D. Hilbert, S. Cohn-Vossen, "Geometry and the imagination" , Chelsea (1952) pp. 249
[a3] R.A. Johnson, "Modern geometry" , Houghton–Mifflin (1929)
[a4] R.H. Eddy, J.B. Wilker, "Plane mappings of isogonal-isotomic type" Soochow J. Math. , 18 : 2 (1992) pp. 135–158 Zbl 0764.51018
[a5] N. Altshiller–Court, "College geometry" , Barnes & Noble (1952)
[a6] H.S.M. Coxeter, "The real projective plane" , Springer (1993) pp. 197–199 (Edition: Third)
[a7] F. Bachmann, "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer (1973) (Edition: Second)
How to Cite This Entry:
Isogonal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isogonal&oldid=39653
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article