Namespaces
Variants
Actions

Ceva theorem

From Encyclopedia of Mathematics
(Redirected from Cevian lines)
Jump to: navigation, search

A theorem on the relation between the lengths of certain lines intersecting a triangle. Let be three points lying, respectively, on the sides BC, CA and AB of a triangle ABC. For the lines AA_1, BB_1 and CC_1 to intersect in a single point or to be all parallel it is necessary and sufficient that

\frac{AC_1}{C_1B}\cdot\frac{BA_1}{A_1C}\cdot\frac{CB_1}{B_1A}=1.

Lines AA_1, BB_1 and CC_1 that meet in a single point and pass through the vertices of a triangle are called Ceva, or Cevian, lines. Ceva's theorem is metrically dual to the Menelaus theorem. It is named after G. Ceva [1].

Ceva's theorem can be generalized to the case of a polygon. Let a point 0 be given in a planar polygon with an odd number of vertices A_1\dots A_{2n-1}, and suppose that the lines 0A_1,\dots,0A_{2n-1} intersect the sides of the polygon opposite to A_1,\dots,A_{2n-1} respectively in points a_n,\dots,a_{2n-1}, a_1,\dots,a_{n-1}. In this case

\frac{A_1a_1}{a_1A_2}\cdot\frac{A_2a_2}{a_2A_3}\cdots\frac{A_{2n-2}a_{2n-2}}{a_{2n-2}A_{2n-1}}\cdot\frac{A_{2n-1}a_{2n-1}}{a_{2n-1}A_1}=1.

References

[1] G. Ceva, "De lineis rectis se invicem secantibus statica constructio" , Milano (1678)
[a1] M. Berger, "Geometry" , I , Springer (1987)
How to Cite This Entry:
Cevian lines. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cevian_lines&oldid=39652