|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922401.png" /> be a field which is complete with respect to an [[ultrametric]] valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922402.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922403.png" />). The valuation ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922404.png" /> has a unique maximal ideal, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922405.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png" /> is called the residue field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922407.png" />.
| + | <!-- |
| + | t0922401.png |
| + | $#A+1 = 85 n = 4 |
| + | $#C+1 = 85 : ~/encyclopedia/old_files/data/T092/T.0902240 Tate algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Examples of such fields are the local fields, i.e. finite extensions of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922408.png" />-adic number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922409.png" />, or the field of Laurent series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224011.png" /> with coefficients in the finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224012.png" /> (cf. also [[Local field|Local field]]).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224013.png" /> denote indeterminates. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224014.png" /> denotes the algebra of all power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224015.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224016.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224017.png" />) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224018.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224019.png" />). The norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224020.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224021.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224022.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224024.png" /> is an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224026.png" /> is easily seen to be the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224027.png" />. | + | Let $ K $ |
| + | be a field which is complete with respect to an [[ultrametric]] valuation $ | \cdot | $( |
| + | i.e. $ | x+ y | \leq \max ( | x | , | y | ) $). |
| + | The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $ |
| + | has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $. |
| + | The field $ k= R/m $ |
| + | is called the residue field of $ K $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224028.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224029.png" /> is called the free Tate algebra. An affinoid algebra, or Tate algebra, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224031.png" /> is a finite extension of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224032.png" /> (i.e. there is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224033.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224034.png" /> which makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224035.png" /> into a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224036.png" />-module). The space of all maximal ideals, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224037.png" /> of a Tate algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224038.png" /> is called an affinoid space.
| + | Examples of such fields are the local fields, i.e. finite extensions of the $ p $- |
| + | adic number field $ \mathbf Q _ {p} $, |
| + | or the field of Laurent series $ \mathbf F _ {p} (( t)) $ |
| + | in $ t $ |
| + | with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $( |
| + | cf. also [[Local field|Local field]]). |
| | | |
− | A [[rigid analytic space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224039.png" /> is obtained by glueing affinoid spaces. Every algebraic variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224040.png" /> has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224041.png" />.
| + | Let $ z _ {1} \dots z _ {n} $ |
| + | denote indeterminates. Then $ T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle $ |
| + | denotes the algebra of all power series $ \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $ |
| + | with $ a _ \alpha \in K $( |
| + | $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $) |
| + | such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $( |
| + | $ | \alpha | = \sum \alpha _ {i} $). |
| + | The norm on $ T _ {n} = T _ {n} ( K) $ |
| + | is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $. |
| + | The ring $ \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} $ |
| + | is denoted by $ T _ {n} ^ {o} $, |
| + | and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $ |
| + | is an ideal of $ T _ {n} ^ {o} $. |
| + | Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $ |
| + | is easily seen to be the ring of polynomials $ k[ z _ {1} \dots z _ {n} ] $. |
| | | |
− | The theory of formal schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224042.png" /> (the valuation ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224043.png" />) is close to that of rigid analytic spaces. This can be seen as follows. | + | The $ K $- |
| + | algebra $ T _ {n} ( K) $ |
| + | is called the free Tate algebra. An affinoid algebra, or Tate algebra, $ A $ |
| + | over $ K $ |
| + | is a finite extension of some $ T _ {n} ( K) $( |
| + | i.e. there is a homomorphism of $ K $- |
| + | algebras $ T _ {n} \rightarrow A $ |
| + | which makes $ A $ |
| + | into a finitely-generated $ T _ {n} $- |
| + | module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $ |
| + | of a Tate algebra $ A $ |
| + | is called an affinoid space. |
| | | |
− | Fix an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224044.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224045.png" />. The completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224046.png" /> with respect to the topology given by the ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224047.png" /> is the ring of strict power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224048.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224049.png" />. Now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224050.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224051.png" /> is the localization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224052.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224053.png" />. So one can view <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224054.png" /> as the "general fibre" of the formal scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224055.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224056.png" />. More generally, any formal scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224057.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224058.png" /> gives rise to a rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224059.png" />, the "general fibre" of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224060.png" />. Non-isomorphic formal schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224061.png" /> can have the same associated rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224062.png" />. Further, any reasonable rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224063.png" /> is associated to some formal scheme over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224064.png" />.
| + | A [[rigid analytic space]] over $ K $ |
| + | is obtained by glueing affinoid spaces. Every algebraic variety over $ K $ |
| + | has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $ K $. |
| | | |
− | Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224065.png" />. Some of the most important are: Weierstrass preparation and division holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224066.png" /> (cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224067.png" /> is perfect; for any maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224068.png" /> of an affinoid algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224069.png" /> the quotient field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224070.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224071.png" />; many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224072.png" /> on an affinoid space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224073.png" /> is associated to a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224074.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224075.png" /> (further: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224076.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224077.png" />).
| + | The theory of formal schemes over $ R $( |
| + | the valuation ring of $ K $) |
| + | is close to that of rigid analytic spaces. This can be seen as follows. |
| | | |
− | Another interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224078.png" /> is: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224079.png" /> consists of all "holomorphic functions" on the polydisc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224080.png" />. This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224081.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224082.png" /> be a local field with algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224083.png" />. Then
| + | Fix an element $ \pi \in R $ |
| + | with $ 0 < | \pi | < 1 $. |
| + | The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $ |
| + | with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $ |
| + | is the ring of strict power series $ R\langle z _ {1} \dots z _ {n} \rangle $ |
| + | over $ R $. |
| + | Now $ R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} $, |
| + | and $ T _ {n} ( K) $ |
| + | is the localization of $ R\langle z _ {1} \dots z _ {n} \rangle $ |
| + | with respect to $ \pi $. |
| + | So one can view $ \mathop{\rm Spm} ( T _ {n} ( K)) $ |
| + | as the "general fibre" of the formal scheme $ \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) $ |
| + | over $ R $. |
| + | More generally, any formal scheme $ X $ |
| + | over $ R $ |
| + | gives rise to a rigid analytic space over $ K $, |
| + | the "general fibre" of $ X $. |
| + | Non-isomorphic formal schemes over $ R $ |
| + | can have the same associated rigid analytic space over $ K $. |
| + | Further, any reasonable rigid analytic space over $ K $ |
| + | is associated to some formal scheme over $ R $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224084.png" /></td> </tr></table>
| + | Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over $ K $. |
| + | Some of the most important are: Weierstrass preparation and division holds for $ T _ {n} ( K) $( |
| + | cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field $ K $ |
| + | is perfect; for any maximal ideal $ M $ |
| + | of an affinoid algebra $ A $ |
| + | the quotient field $ R/M $ |
| + | is a finite extension of $ K $; |
| + | many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf $ S $ |
| + | on an affinoid space $ \mathop{\rm Spm} ( A) $ |
| + | is associated to a finitely-generated $ A $- |
| + | module $ M= H ^ {0} ( S) $( |
| + | further: $ H ^ {i} ( S)= 0 $ |
| + | for $ i \neq 0 $). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224085.png" /></td> </tr></table>
| + | Another interpretation of $ T _ {n} ( K) $ |
| + | is: $ T _ {n} ( K) $ |
| + | consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $. |
| + | This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces $ \Omega ^ {(} n) $. |
| + | Let $ K $ |
| + | be a local field with algebraic closure $ \overline{K}\; $. |
| + | Then |
| + | |
| + | $$ |
| + | \Omega ^ {(} n) = |
| + | $$ |
| + | |
| + | $$ |
| + | = \ |
| + | \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } |
| + | ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 |
| + | \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \} |
| + | $$ |
| | | |
| is a Drinfel'd symmetric space. | | is a Drinfel'd symmetric space. |
Let $ K $
be a field which is complete with respect to an ultrametric valuation $ | \cdot | $(
i.e. $ | x+ y | \leq \max ( | x | , | y | ) $).
The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $
has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $.
The field $ k= R/m $
is called the residue field of $ K $.
Examples of such fields are the local fields, i.e. finite extensions of the $ p $-
adic number field $ \mathbf Q _ {p} $,
or the field of Laurent series $ \mathbf F _ {p} (( t)) $
in $ t $
with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $(
cf. also Local field).
Let $ z _ {1} \dots z _ {n} $
denote indeterminates. Then $ T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle $
denotes the algebra of all power series $ \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $
with $ a _ \alpha \in K $(
$ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $)
such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $(
$ | \alpha | = \sum \alpha _ {i} $).
The norm on $ T _ {n} = T _ {n} ( K) $
is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $.
The ring $ \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} $
is denoted by $ T _ {n} ^ {o} $,
and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $
is an ideal of $ T _ {n} ^ {o} $.
Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $
is easily seen to be the ring of polynomials $ k[ z _ {1} \dots z _ {n} ] $.
The $ K $-
algebra $ T _ {n} ( K) $
is called the free Tate algebra. An affinoid algebra, or Tate algebra, $ A $
over $ K $
is a finite extension of some $ T _ {n} ( K) $(
i.e. there is a homomorphism of $ K $-
algebras $ T _ {n} \rightarrow A $
which makes $ A $
into a finitely-generated $ T _ {n} $-
module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $
of a Tate algebra $ A $
is called an affinoid space.
A rigid analytic space over $ K $
is obtained by glueing affinoid spaces. Every algebraic variety over $ K $
has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $ K $.
The theory of formal schemes over $ R $(
the valuation ring of $ K $)
is close to that of rigid analytic spaces. This can be seen as follows.
Fix an element $ \pi \in R $
with $ 0 < | \pi | < 1 $.
The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $
with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $
is the ring of strict power series $ R\langle z _ {1} \dots z _ {n} \rangle $
over $ R $.
Now $ R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} $,
and $ T _ {n} ( K) $
is the localization of $ R\langle z _ {1} \dots z _ {n} \rangle $
with respect to $ \pi $.
So one can view $ \mathop{\rm Spm} ( T _ {n} ( K)) $
as the "general fibre" of the formal scheme $ \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) $
over $ R $.
More generally, any formal scheme $ X $
over $ R $
gives rise to a rigid analytic space over $ K $,
the "general fibre" of $ X $.
Non-isomorphic formal schemes over $ R $
can have the same associated rigid analytic space over $ K $.
Further, any reasonable rigid analytic space over $ K $
is associated to some formal scheme over $ R $.
Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over $ K $.
Some of the most important are: Weierstrass preparation and division holds for $ T _ {n} ( K) $(
cf. also Weierstrass theorem); affinoid algebras are Noetherian rings, and even excellent rings if the field $ K $
is perfect; for any maximal ideal $ M $
of an affinoid algebra $ A $
the quotient field $ R/M $
is a finite extension of $ K $;
many finiteness theorems; any coherent sheaf $ S $
on an affinoid space $ \mathop{\rm Spm} ( A) $
is associated to a finitely-generated $ A $-
module $ M= H ^ {0} ( S) $(
further: $ H ^ {i} ( S)= 0 $
for $ i \neq 0 $).
Another interpretation of $ T _ {n} ( K) $
is: $ T _ {n} ( K) $
consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $.
This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces $ \Omega ^ {(} n) $.
Let $ K $
be a local field with algebraic closure $ \overline{K}\; $.
Then
$$
\Omega ^ {(} n) =
$$
$$
= \
\{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; }
^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0
\textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \}
$$
is a Drinfel'd symmetric space.
Spaces of this type have been used for the construction of Tate's elliptic curves (cf. Tate curve), Mumford curves and surfaces, Shimura curves and varieties, etc.
References
[a1] | S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984) |
[a2] | V.G. Drinfel'd, "Coverings of -adic symmetric regions" Funct. Anal. Appl. , 10 : 2 (1976) pp. 107–115 Funkts. Anal. Prilozhen. , 10 : 2 pp. 29–41 |
[a3] | G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , Lect. notes in math. , 1111 , Springer (1984) |
[a4] | J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981) |
[a5] | L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , Lect. notes in math. , 817 , Springer (1980) |
[a6] | D. Mumford, "An analytic construction of degenerating curves over complete local fields" Compos. Math. , 24 (1972) pp. 129–174 |
[a7] | D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" Compos. Math. , 24 (1972) pp. 239–272 |
[a8] | D. Mumford, "An algebraic surface with ample, , " Amer. J. Math. , 101 (1979) pp. 233–244 |
[a9] | M. Raynaud, "Variétés abéliennes en géométrie rigide" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 2 , Gauthier-Villars (1971) pp. 473–477 |
[a10] | J. Tate, "Rigid analytic spaces" Invent. Math. , 12 (1971) pp. 257–289 |