Difference between revisions of "Tate algebra"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0922401.png | ||
+ | $#A+1 = 85 n = 4 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/T092/T.0902240 Tate algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | Let | + | Let |
+ | be a field which is complete with respect to an [[ultrametric]] valuation | \cdot | ( | ||
+ | i.e. $ | x+ y | \leq \max ( | x | , | y | ) $). | ||
+ | The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $ | ||
+ | has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $. | ||
+ | The field $ k= R/m $ | ||
+ | is called the residue field of K . | ||
− | + | Examples of such fields are the local fields, i.e. finite extensions of the p - | |
+ | adic number field \mathbf Q _ {p} , | ||
+ | or the field of Laurent series $ \mathbf F _ {p} (( t)) $ | ||
+ | in $ t $ | ||
+ | with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $( | ||
+ | cf. also [[Local field|Local field]]). | ||
− | + | Let z _ {1} \dots z _ {n} | |
+ | denote indeterminates. Then T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle | ||
+ | denotes the algebra of all power series \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } | ||
+ | with a _ \alpha \in K ( | ||
+ | $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $) | ||
+ | such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $( | ||
+ | $ | \alpha | = \sum \alpha _ {i} $). | ||
+ | The norm on T _ {n} = T _ {n} ( K) | ||
+ | is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $. | ||
+ | The ring \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} | ||
+ | is denoted by T _ {n} ^ {o} , | ||
+ | and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $ | ||
+ | is an ideal of T _ {n} ^ {o} . | ||
+ | Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $ | ||
+ | is easily seen to be the ring of polynomials k[ z _ {1} \dots z _ {n} ] . | ||
− | The | + | The K - |
+ | algebra $ T _ {n} ( K) $ | ||
+ | is called the free Tate algebra. An affinoid algebra, or Tate algebra, A | ||
+ | over K | ||
+ | is a finite extension of some T _ {n} ( K) ( | ||
+ | i.e. there is a homomorphism of K - | ||
+ | algebras T _ {n} \rightarrow A | ||
+ | which makes A | ||
+ | into a finitely-generated T _ {n} - | ||
+ | module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $ | ||
+ | of a Tate algebra A | ||
+ | is called an affinoid space. | ||
− | + | A [[rigid analytic space]] over $ K $ | |
+ | is obtained by glueing affinoid spaces. Every algebraic variety over K | ||
+ | has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over K . | ||
− | + | The theory of formal schemes over R ( | |
+ | the valuation ring of K ) | ||
+ | is close to that of rigid analytic spaces. This can be seen as follows. | ||
− | + | Fix an element \pi \in R | |
+ | with $ 0 < | \pi | < 1 $. | ||
+ | The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $ | ||
+ | with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $ | ||
+ | is the ring of strict power series R\langle z _ {1} \dots z _ {n} \rangle | ||
+ | over R . | ||
+ | Now R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} , | ||
+ | and T _ {n} ( K) | ||
+ | is the localization of R\langle z _ {1} \dots z _ {n} \rangle | ||
+ | with respect to \pi . | ||
+ | So one can view \mathop{\rm Spm} ( T _ {n} ( K)) | ||
+ | as the "general fibre" of the formal scheme \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) | ||
+ | over R . | ||
+ | More generally, any formal scheme X | ||
+ | over R | ||
+ | gives rise to a rigid analytic space over K , | ||
+ | the "general fibre" of X . | ||
+ | Non-isomorphic formal schemes over R | ||
+ | can have the same associated rigid analytic space over K . | ||
+ | Further, any reasonable rigid analytic space over K | ||
+ | is associated to some formal scheme over R . | ||
− | + | Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over K . | |
+ | Some of the most important are: Weierstrass preparation and division holds for T _ {n} ( K) ( | ||
+ | cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field K | ||
+ | is perfect; for any maximal ideal M | ||
+ | of an affinoid algebra A | ||
+ | the quotient field R/M | ||
+ | is a finite extension of K ; | ||
+ | many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf S | ||
+ | on an affinoid space \mathop{\rm Spm} ( A) | ||
+ | is associated to a finitely-generated A - | ||
+ | module M= H ^ {0} ( S) ( | ||
+ | further: $ H ^ {i} ( S)= 0 $ | ||
+ | for i \neq 0 ). | ||
− | + | Another interpretation of T _ {n} ( K) | |
+ | is: T _ {n} ( K) | ||
+ | consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $. | ||
+ | This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces \Omega ^ {(} n) . | ||
+ | Let K | ||
+ | be a local field with algebraic closure $ \overline{K}\; $. | ||
+ | Then | ||
+ | |||
+ | $$ | ||
+ | \Omega ^ {(} n) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } | ||
+ | ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 | ||
+ | \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \} | ||
+ | $$ | ||
is a Drinfel'd symmetric space. | is a Drinfel'd symmetric space. | ||
− | Spaces of this type have been used for the construction of Tate's elliptic curves, Mumford curves and surfaces, Shimura curves and varieties, etc. | + | Spaces of this type have been used for the construction of Tate's elliptic curves (cf. [[Tate curve]]), Mumford curves and surfaces, Shimura curves and varieties, etc. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.G. Drinfel'd, "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions" ''Funct. Anal. Appl.'' , '''10''' : 2 (1976) pp. 107–115 ''Funkts. Anal. Prilozhen.'' , '''10''' : 2 pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating curves over complete local fields" ''Compos. Math.'' , '''24''' (1972) pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" ''Compos. Math.'' , '''24''' (1972) pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Mumford, "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />" ''Amer. J. Math.'' , '''101''' (1979) pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Raynaud, "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars (1971) pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J. Tate, "Rigid analytic spaces" ''Invent. Math.'' , '''12''' (1971) pp. 257–289</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.G. Drinfel'd, "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions" ''Funct. Anal. Appl.'' , '''10''' : 2 (1976) pp. 107–115 ''Funkts. Anal. Prilozhen.'' , '''10''' : 2 pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating curves over complete local fields" ''Compos. Math.'' , '''24''' (1972) pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" ''Compos. Math.'' , '''24''' (1972) pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Mumford, "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />" ''Amer. J. Math.'' , '''101''' (1979) pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Raynaud, "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars (1971) pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J. Tate, "Rigid analytic spaces" ''Invent. Math.'' , '''12''' (1971) pp. 257–289</TD></TR></table> |
Latest revision as of 08:25, 6 June 2020
Let K
be a field which is complete with respect to an ultrametric valuation | \cdot | (
i.e. | x+ y | \leq \max ( | x | , | y | ) ).
The valuation ring R= \{ {a \in K } : {| a | \leq 1 } \}
has a unique maximal ideal, m= \{ {a \in K } : {| a | < 1 } \} .
The field k= R/m
is called the residue field of K .
Examples of such fields are the local fields, i.e. finite extensions of the p - adic number field \mathbf Q _ {p} , or the field of Laurent series \mathbf F _ {p} (( t)) in t with coefficients in the finite field \mathbf F _ {p} = \mathbf Z / p \mathbf Z ( cf. also Local field).
Let z _ {1} \dots z _ {n} denote indeterminates. Then T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle denotes the algebra of all power series \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } with a _ \alpha \in K ( \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) ) such that \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 ( | \alpha | = \sum \alpha _ {i} ). The norm on T _ {n} = T _ {n} ( K) is given by \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | . The ring \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} is denoted by T _ {n} ^ {o} , and T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} is an ideal of T _ {n} ^ {o} . Then \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} is easily seen to be the ring of polynomials k[ z _ {1} \dots z _ {n} ] .
The K - algebra T _ {n} ( K) is called the free Tate algebra. An affinoid algebra, or Tate algebra, A over K is a finite extension of some T _ {n} ( K) ( i.e. there is a homomorphism of K - algebras T _ {n} \rightarrow A which makes A into a finitely-generated T _ {n} - module). The space of all maximal ideals, \mathop{\rm Spm} ( A) of a Tate algebra A is called an affinoid space.
A rigid analytic space over K is obtained by glueing affinoid spaces. Every algebraic variety over K has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over K .
The theory of formal schemes over R ( the valuation ring of K ) is close to that of rigid analytic spaces. This can be seen as follows.
Fix an element \pi \in R with 0 < | \pi | < 1 . The completion of R _ {n} = R[ z _ {1} \dots z _ {n} ] with respect to the topology given by the ideals \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} is the ring of strict power series R\langle z _ {1} \dots z _ {n} \rangle over R . Now R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} , and T _ {n} ( K) is the localization of R\langle z _ {1} \dots z _ {n} \rangle with respect to \pi . So one can view \mathop{\rm Spm} ( T _ {n} ( K)) as the "general fibre" of the formal scheme \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) over R . More generally, any formal scheme X over R gives rise to a rigid analytic space over K , the "general fibre" of X . Non-isomorphic formal schemes over R can have the same associated rigid analytic space over K . Further, any reasonable rigid analytic space over K is associated to some formal scheme over R .
Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over K . Some of the most important are: Weierstrass preparation and division holds for T _ {n} ( K) ( cf. also Weierstrass theorem); affinoid algebras are Noetherian rings, and even excellent rings if the field K is perfect; for any maximal ideal M of an affinoid algebra A the quotient field R/M is a finite extension of K ; many finiteness theorems; any coherent sheaf S on an affinoid space \mathop{\rm Spm} ( A) is associated to a finitely-generated A - module M= H ^ {0} ( S) ( further: H ^ {i} ( S)= 0 for i \neq 0 ).
Another interpretation of T _ {n} ( K) is: T _ {n} ( K) consists of all "holomorphic functions" on the polydisc \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} . This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces \Omega ^ {(} n) . Let K be a local field with algebraic closure \overline{K}\; . Then
\Omega ^ {(} n) =
= \ \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \}
is a Drinfel'd symmetric space.
Spaces of this type have been used for the construction of Tate's elliptic curves (cf. Tate curve), Mumford curves and surfaces, Shimura curves and varieties, etc.
References
[a1] | S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984) |
[a2] | V.G. Drinfel'd, "Coverings of ![]() |
[a3] | G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , Lect. notes in math. , 1111 , Springer (1984) |
[a4] | J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981) |
[a5] | L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , Lect. notes in math. , 817 , Springer (1980) |
[a6] | D. Mumford, "An analytic construction of degenerating curves over complete local fields" Compos. Math. , 24 (1972) pp. 129–174 |
[a7] | D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" Compos. Math. , 24 (1972) pp. 239–272 |
[a8] | D. Mumford, "An algebraic surface with ![]() ![]() ![]() |
[a9] | M. Raynaud, "Variétés abéliennes en géométrie rigide" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 2 , Gauthier-Villars (1971) pp. 473–477 |
[a10] | J. Tate, "Rigid analytic spaces" Invent. Math. , 12 (1971) pp. 257–289 |
Tate algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tate_algebra&oldid=42381