Difference between revisions of "Tate algebra"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0922401.png | ||
+ | $#A+1 = 85 n = 4 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/T092/T.0902240 Tate algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | Let | + | Let $ K $ |
+ | be a field which is complete with respect to an [[ultrametric]] valuation $ | \cdot | $( | ||
+ | i.e. $ | x+ y | \leq \max ( | x | , | y | ) $). | ||
+ | The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $ | ||
+ | has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $. | ||
+ | The field $ k= R/m $ | ||
+ | is called the residue field of $ K $. | ||
− | + | Examples of such fields are the local fields, i.e. finite extensions of the $ p $- | |
+ | adic number field $ \mathbf Q _ {p} $, | ||
+ | or the field of Laurent series $ \mathbf F _ {p} (( t)) $ | ||
+ | in $ t $ | ||
+ | with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $( | ||
+ | cf. also [[Local field|Local field]]). | ||
− | + | Let $ z _ {1} \dots z _ {n} $ | |
+ | denote indeterminates. Then $ T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle $ | ||
+ | denotes the algebra of all power series $ \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $ | ||
+ | with $ a _ \alpha \in K $( | ||
+ | $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $) | ||
+ | such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $( | ||
+ | $ | \alpha | = \sum \alpha _ {i} $). | ||
+ | The norm on $ T _ {n} = T _ {n} ( K) $ | ||
+ | is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $. | ||
+ | The ring $ \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} $ | ||
+ | is denoted by $ T _ {n} ^ {o} $, | ||
+ | and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $ | ||
+ | is an ideal of $ T _ {n} ^ {o} $. | ||
+ | Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $ | ||
+ | is easily seen to be the ring of polynomials $ k[ z _ {1} \dots z _ {n} ] $. | ||
− | The | + | The $ K $- |
+ | algebra $ T _ {n} ( K) $ | ||
+ | is called the free Tate algebra. An affinoid algebra, or Tate algebra, $ A $ | ||
+ | over $ K $ | ||
+ | is a finite extension of some $ T _ {n} ( K) $( | ||
+ | i.e. there is a homomorphism of $ K $- | ||
+ | algebras $ T _ {n} \rightarrow A $ | ||
+ | which makes $ A $ | ||
+ | into a finitely-generated $ T _ {n} $- | ||
+ | module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $ | ||
+ | of a Tate algebra $ A $ | ||
+ | is called an affinoid space. | ||
− | + | A [[rigid analytic space]] over $ K $ | |
+ | is obtained by glueing affinoid spaces. Every algebraic variety over $ K $ | ||
+ | has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $ K $. | ||
− | + | The theory of formal schemes over $ R $( | |
+ | the valuation ring of $ K $) | ||
+ | is close to that of rigid analytic spaces. This can be seen as follows. | ||
− | + | Fix an element $ \pi \in R $ | |
+ | with $ 0 < | \pi | < 1 $. | ||
+ | The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $ | ||
+ | with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $ | ||
+ | is the ring of strict power series $ R\langle z _ {1} \dots z _ {n} \rangle $ | ||
+ | over $ R $. | ||
+ | Now $ R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} $, | ||
+ | and $ T _ {n} ( K) $ | ||
+ | is the localization of $ R\langle z _ {1} \dots z _ {n} \rangle $ | ||
+ | with respect to $ \pi $. | ||
+ | So one can view $ \mathop{\rm Spm} ( T _ {n} ( K)) $ | ||
+ | as the "general fibre" of the formal scheme $ \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) $ | ||
+ | over $ R $. | ||
+ | More generally, any formal scheme $ X $ | ||
+ | over $ R $ | ||
+ | gives rise to a rigid analytic space over $ K $, | ||
+ | the "general fibre" of $ X $. | ||
+ | Non-isomorphic formal schemes over $ R $ | ||
+ | can have the same associated rigid analytic space over $ K $. | ||
+ | Further, any reasonable rigid analytic space over $ K $ | ||
+ | is associated to some formal scheme over $ R $. | ||
− | + | Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over $ K $. | |
+ | Some of the most important are: Weierstrass preparation and division holds for $ T _ {n} ( K) $( | ||
+ | cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field $ K $ | ||
+ | is perfect; for any maximal ideal $ M $ | ||
+ | of an affinoid algebra $ A $ | ||
+ | the quotient field $ R/M $ | ||
+ | is a finite extension of $ K $; | ||
+ | many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf $ S $ | ||
+ | on an affinoid space $ \mathop{\rm Spm} ( A) $ | ||
+ | is associated to a finitely-generated $ A $- | ||
+ | module $ M= H ^ {0} ( S) $( | ||
+ | further: $ H ^ {i} ( S)= 0 $ | ||
+ | for $ i \neq 0 $). | ||
− | + | Another interpretation of $ T _ {n} ( K) $ | |
+ | is: $ T _ {n} ( K) $ | ||
+ | consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $. | ||
+ | This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces $ \Omega ^ {(} n) $. | ||
+ | Let $ K $ | ||
+ | be a local field with algebraic closure $ \overline{K}\; $. | ||
+ | Then | ||
+ | |||
+ | $$ | ||
+ | \Omega ^ {(} n) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } | ||
+ | ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 | ||
+ | \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \} | ||
+ | $$ | ||
is a Drinfel'd symmetric space. | is a Drinfel'd symmetric space. | ||
− | Spaces of this type have been used for the construction of Tate's elliptic curves, Mumford curves and surfaces, Shimura curves and varieties, etc. | + | Spaces of this type have been used for the construction of Tate's elliptic curves (cf. [[Tate curve]]), Mumford curves and surfaces, Shimura curves and varieties, etc. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.G. Drinfel'd, "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions" ''Funct. Anal. Appl.'' , '''10''' : 2 (1976) pp. 107–115 ''Funkts. Anal. Prilozhen.'' , '''10''' : 2 pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating curves over complete local fields" ''Compos. Math.'' , '''24''' (1972) pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" ''Compos. Math.'' , '''24''' (1972) pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Mumford, "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />" ''Amer. J. Math.'' , '''101''' (1979) pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Raynaud, "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars (1971) pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J. Tate, "Rigid analytic spaces" ''Invent. Math.'' , '''12''' (1971) pp. 257–289</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.G. Drinfel'd, "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions" ''Funct. Anal. Appl.'' , '''10''' : 2 (1976) pp. 107–115 ''Funkts. Anal. Prilozhen.'' , '''10''' : 2 pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating curves over complete local fields" ''Compos. Math.'' , '''24''' (1972) pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" ''Compos. Math.'' , '''24''' (1972) pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Mumford, "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />" ''Amer. J. Math.'' , '''101''' (1979) pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Raynaud, "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars (1971) pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J. Tate, "Rigid analytic spaces" ''Invent. Math.'' , '''12''' (1971) pp. 257–289</TD></TR></table> |
Latest revision as of 08:25, 6 June 2020
Let $ K $
be a field which is complete with respect to an ultrametric valuation $ | \cdot | $(
i.e. $ | x+ y | \leq \max ( | x | , | y | ) $).
The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $
has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $.
The field $ k= R/m $
is called the residue field of $ K $.
Examples of such fields are the local fields, i.e. finite extensions of the $ p $- adic number field $ \mathbf Q _ {p} $, or the field of Laurent series $ \mathbf F _ {p} (( t)) $ in $ t $ with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $( cf. also Local field).
Let $ z _ {1} \dots z _ {n} $ denote indeterminates. Then $ T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle $ denotes the algebra of all power series $ \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $ with $ a _ \alpha \in K $( $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $) such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $( $ | \alpha | = \sum \alpha _ {i} $). The norm on $ T _ {n} = T _ {n} ( K) $ is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $. The ring $ \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} $ is denoted by $ T _ {n} ^ {o} $, and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $ is an ideal of $ T _ {n} ^ {o} $. Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $ is easily seen to be the ring of polynomials $ k[ z _ {1} \dots z _ {n} ] $.
The $ K $- algebra $ T _ {n} ( K) $ is called the free Tate algebra. An affinoid algebra, or Tate algebra, $ A $ over $ K $ is a finite extension of some $ T _ {n} ( K) $( i.e. there is a homomorphism of $ K $- algebras $ T _ {n} \rightarrow A $ which makes $ A $ into a finitely-generated $ T _ {n} $- module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $ of a Tate algebra $ A $ is called an affinoid space.
A rigid analytic space over $ K $ is obtained by glueing affinoid spaces. Every algebraic variety over $ K $ has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $ K $.
The theory of formal schemes over $ R $( the valuation ring of $ K $) is close to that of rigid analytic spaces. This can be seen as follows.
Fix an element $ \pi \in R $ with $ 0 < | \pi | < 1 $. The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $ with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $ is the ring of strict power series $ R\langle z _ {1} \dots z _ {n} \rangle $ over $ R $. Now $ R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} $, and $ T _ {n} ( K) $ is the localization of $ R\langle z _ {1} \dots z _ {n} \rangle $ with respect to $ \pi $. So one can view $ \mathop{\rm Spm} ( T _ {n} ( K)) $ as the "general fibre" of the formal scheme $ \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) $ over $ R $. More generally, any formal scheme $ X $ over $ R $ gives rise to a rigid analytic space over $ K $, the "general fibre" of $ X $. Non-isomorphic formal schemes over $ R $ can have the same associated rigid analytic space over $ K $. Further, any reasonable rigid analytic space over $ K $ is associated to some formal scheme over $ R $.
Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over $ K $. Some of the most important are: Weierstrass preparation and division holds for $ T _ {n} ( K) $( cf. also Weierstrass theorem); affinoid algebras are Noetherian rings, and even excellent rings if the field $ K $ is perfect; for any maximal ideal $ M $ of an affinoid algebra $ A $ the quotient field $ R/M $ is a finite extension of $ K $; many finiteness theorems; any coherent sheaf $ S $ on an affinoid space $ \mathop{\rm Spm} ( A) $ is associated to a finitely-generated $ A $- module $ M= H ^ {0} ( S) $( further: $ H ^ {i} ( S)= 0 $ for $ i \neq 0 $).
Another interpretation of $ T _ {n} ( K) $ is: $ T _ {n} ( K) $ consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $. This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces $ \Omega ^ {(} n) $. Let $ K $ be a local field with algebraic closure $ \overline{K}\; $. Then
$$ \Omega ^ {(} n) = $$
$$ = \ \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \} $$
is a Drinfel'd symmetric space.
Spaces of this type have been used for the construction of Tate's elliptic curves (cf. Tate curve), Mumford curves and surfaces, Shimura curves and varieties, etc.
References
[a1] | S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984) |
[a2] | V.G. Drinfel'd, "Coverings of -adic symmetric regions" Funct. Anal. Appl. , 10 : 2 (1976) pp. 107–115 Funkts. Anal. Prilozhen. , 10 : 2 pp. 29–41 |
[a3] | G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , Lect. notes in math. , 1111 , Springer (1984) |
[a4] | J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981) |
[a5] | L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , Lect. notes in math. , 817 , Springer (1980) |
[a6] | D. Mumford, "An analytic construction of degenerating curves over complete local fields" Compos. Math. , 24 (1972) pp. 129–174 |
[a7] | D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" Compos. Math. , 24 (1972) pp. 239–272 |
[a8] | D. Mumford, "An algebraic surface with ample, , " Amer. J. Math. , 101 (1979) pp. 233–244 |
[a9] | M. Raynaud, "Variétés abéliennes en géométrie rigide" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 2 , Gauthier-Villars (1971) pp. 473–477 |
[a10] | J. Tate, "Rigid analytic spaces" Invent. Math. , 12 (1971) pp. 257–289 |
Tate algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tate_algebra&oldid=40923