Difference between revisions of "Cyclic vector"
(MSC 47A16) |
m (italic for i.e.) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{TEX|done}}{{MSC|47A16}} | + | {{TEX|done}}{{MSC|15A|47A16,93B}} |
− | Let $A$ be an endomorphism of a finite-dimensional [[Vector space|vector space]] $V$. A cyclic vector for $A$ is a vector $v$ such that $v,Av,\dots,A^{n-1}v$ form a basis for $V$, i.e. such that the pair $(A,v)$ is completely reachable (see also [[Pole assignment problem|Pole assignment problem]]; [[Majorization ordering|Majorization ordering]]; [[System of subvarieties|System of subvarieties]]; [[Frobenius matrix|Frobenius matrix]]). | + | Let $A$ be an endomorphism of a finite-dimensional [[Vector space|vector space]] $V$. A cyclic vector for $A$ is a vector $v$ such that $v,Av,\dots,A^{n-1}v$ form a basis for $V$, ''i.e.'' such that the pair $(A,v)$ is completely reachable (see also [[Pole assignment problem|Pole assignment problem]]; [[Majorization ordering|Majorization ordering]]; [[System of subvarieties|System of subvarieties]]; [[Frobenius matrix|Frobenius matrix]]). |
A vector $v$ in an (infinite-dimensional) [[Banach space|Banach space]] or [[Hilbert space|Hilbert space]] with an operator $A$ on it is said to be cyclic if the linear combinations of the vectors $A^iv$, $i=0,1,\dots$, form a dense subspace, [[#References|[a1]]]. | A vector $v$ in an (infinite-dimensional) [[Banach space|Banach space]] or [[Hilbert space|Hilbert space]] with an operator $A$ on it is said to be cyclic if the linear combinations of the vectors $A^iv$, $i=0,1,\dots$, form a dense subspace, [[#References|[a1]]]. | ||
Line 10: | Line 10: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Reed, B. Simon, "Methods of mathematical physics: Functional analysis" , '''1''' , Acad. Press (1972) pp. 226ff</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.V. Kadison, J.R. Ringrose, "Fundamentals of the theory of operator algebras" , '''1''' , Acad. Press (1983) pp. 276</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.A. Gaal, "Linear analysis and representation theory" , Springer (1973) pp. 156</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) pp. 53 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Noordhoff (1964) pp. 239 (In Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Reed, B. Simon, "Methods of mathematical physics: Functional analysis" , '''1''' , Acad. Press (1972) pp. 226ff</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> R.V. Kadison, J.R. Ringrose, "Fundamentals of the theory of operator algebras" , '''1''' , Acad. Press (1983) pp. 276</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> S.A. Gaal, "Linear analysis and representation theory" , Springer (1973) pp. 156</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) pp. 53 (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Noordhoff (1964) pp. 239 (In Russian) {{ZBL|0137.31703}}</TD></TR> | ||
+ | </table> |
Latest revision as of 13:40, 17 March 2023
2020 Mathematics Subject Classification: Primary: 15A Secondary: 47A1693B [MSN][ZBL]
Let $A$ be an endomorphism of a finite-dimensional vector space $V$. A cyclic vector for $A$ is a vector $v$ such that $v,Av,\dots,A^{n-1}v$ form a basis for $V$, i.e. such that the pair $(A,v)$ is completely reachable (see also Pole assignment problem; Majorization ordering; System of subvarieties; Frobenius matrix).
A vector $v$ in an (infinite-dimensional) Banach space or Hilbert space with an operator $A$ on it is said to be cyclic if the linear combinations of the vectors $A^iv$, $i=0,1,\dots$, form a dense subspace, [a1].
More generally, let $\mathcal A$ be a subalgebra of $\mathcal B(H)$, the algebra of bounded operators on a Hilbert space $H$. Then $v\in H$ is cyclic if $\mathcal Av$ is dense in $H$, [a2], [a5].
If $\phi$ is a unitary representation of a (locally compact) group $G$ in $H$, then $v\in H$ is called cyclic if the linear combinations of the $\phi(g)v$, $g\in G$, form a dense set, [a3], [a4]. For the connection between positive-definite functions on $G$ and the cyclic representations (i.e., representations that admit a cyclic vector), see Positive-definite function on a group. An irreducible representation is cyclic with respect to every non-zero vector.
References
[a1] | M. Reed, B. Simon, "Methods of mathematical physics: Functional analysis" , 1 , Acad. Press (1972) pp. 226ff |
[a2] | R.V. Kadison, J.R. Ringrose, "Fundamentals of the theory of operator algebras" , 1 , Acad. Press (1983) pp. 276 |
[a3] | S.A. Gaal, "Linear analysis and representation theory" , Springer (1973) pp. 156 |
[a4] | A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) pp. 53 (In Russian) |
[a5] | M.A. Naimark, "Normed rings" , Noordhoff (1964) pp. 239 (In Russian) Zbl 0137.31703 |
Cyclic vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cyclic_vector&oldid=34881