Namespaces
Variants
Actions

Difference between revisions of "D-module"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (fixing textrm)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300202.png" />-modules is an algebraic formalism of the theory of linear partial differential equations (cf. [[Linear partial differential equation|Linear partial differential equation]]). It is concerned with modules over rings of differential operators (cf. [[Module|Module]]) and has been developed by I.N. Bernstein, J.-E. Björk, M. Kashiwara, T. Kawai, B. Malgrange, Z. Mebkhout, and others. Lately the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300203.png" />-modules has found applications in several parts of mathematics, e.g., [[Cohomology|cohomology]] of singular spaces, [[Hodge structure|Hodge structure]] on intersection cohomology, singularity theory (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]), [[Gauss–Manin connection|Gauss–Manin connection]], [[Representation theory|representation theory]], and Kazhdan–Lusztig conjectures. Two survey articles on the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300204.png" />-modules are [[#References|[a10]]] and [[#References|[a14]]]. There is a very elegant theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300205.png" />-modules in case the underlying manifolds are algebraic (cf. [[#References|[a4]]]). An illuminating account of the analytic theory may be found in [[#References|[a15]]] (cf. also [[#References|[a2]]], [[#References|[a3]]]). A powerful technique is to work microlocally and introduce microdifferential operators (cf. [[#References|[a7]]], [[#References|[a9]]], [[#References|[a18]]]). However, microlocal results related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300206.png" />-modules will not be presented below.
+
<!--
 +
d0300202.png
 +
$#A+1 = 266 n = 5
 +
$#C+1 = 266 : ~/encyclopedia/old_files/data/D030/D.0300020 \BMI D\EMI\AAhmodule
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Henceforth, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300207.png" /> denote a complex analytic manifold (cf. [[Complex manifold|Complex manifold]]) or a smooth [[Algebraic variety|algebraic variety]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300208.png" />. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d0300209.png" /> the structure sheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002010.png" />. The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002011.png" /> of differential operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002012.png" /> is the subsheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002013.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002015.png" />, the sheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002016.png" />-linear derivations. Hence on a chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002017.png" /> with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002018.png" /> an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002019.png" /> can be written as a finite sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002022.png" />. In particular in the algebraic case, being a bit more general, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002024.png" /> is a field of characteristic zero, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002025.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002026.png" />-th [[Weyl algebra|Weyl algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002027.png" />. The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002028.png" /> is a [[Coherent sheaf|coherent sheaf]] of non-commutative left and right Noetherian rings (cf. [[#References|[a3]]]). The structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002029.png" /> becomes in a natural way a coherent left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002030.png" />-module. More generally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002031.png" /> be a [[Vector bundle|vector bundle]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002032.png" /> with an integrable [[Connection|connection]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002033.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002034.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002035.png" /> extends to a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002036.png" />-module structure by putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002037.png" /> for all local sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002039.png" />. Conversely, each left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002040.png" />-module whose underlying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002041.png" />-module is coherent is of this form.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Usually one considers only left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002042.png" />-modules. This is harmless as one can freely exchange left and right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002043.png" />-modules. Namely, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002044.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002045.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002046.png" />) of highest-order differential forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002047.png" /> carries a natural structure of a coherent right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002048.png" />-module: for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002050.png" /> one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002051.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002052.png" /> denotes the [[Lie derivative|Lie derivative]] with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002053.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002054.png" /> has a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002055.png" />-structure for any left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002056.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002058.png" /> has a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002059.png" />-structure for any right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002060.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002061.png" />.
+
The theory of  $ \mathcal D $-modules is an algebraic formalism of the theory of linear partial differential equations (cf. [[Linear partial differential equation|Linear partial differential equation]]). It is concerned with modules over rings of differential operators (cf. [[Module|Module]]) and has been developed by I.N. Bernstein, J.-E. Björk, M. Kashiwara, T. Kawai, B. Malgrange, Z. Mebkhout, and others. Lately the theory of $ \mathcal D $-modules has found applications in several parts of mathematics, e.g., [[Cohomology|cohomology]] of singular spaces, [[Hodge structure|Hodge structure]] on intersection cohomology, singularity theory (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]), [[Gauss–Manin connection|Gauss–Manin connection]], [[Representation theory|representation theory]], and Kazhdan–Lusztig conjectures. Two survey articles on the theory of  $ \mathcal D $-modules are [[#References|[a10]]] and [[#References|[a14]]]. There is a very elegant theory of  $ \mathcal D $-modules in case the underlying manifolds are algebraic (cf. [[#References|[a4]]]). An illuminating account of the analytic theory may be found in [[#References|[a15]]] (cf. also [[#References|[a2]]], [[#References|[a3]]]). A powerful technique is to work microlocally and introduce microdifferential operators (cf. [[#References|[a7]]], [[#References|[a9]]], [[#References|[a18]]]). However, microlocal results related to  $ \mathcal D $-modules will not be presented below.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002062.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002063.png" />-matrix with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002064.png" /> and consider the left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002065.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002066.png" />, defined by letting the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002067.png" /> act from the right on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002068.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002069.png" /> is a coherent left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002070.png" />-module. Clearly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002071.png" />. Thus, holomorphic solutions of the linear system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002072.png" /> can be interpreted as elements of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002073.png" />-vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002074.png" />, and vice versa. This leads one to consider the derived solution complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002075.png" /> for any left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002076.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002077.png" />. Identifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002078.png" /> with a subsheaf of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002079.png" /> enables one to construct the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002080.png" />. It is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002081.png" /> and is called the de Rham complex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002082.png" />.
+
Henceforth, let  $  X $
 +
denote a complex analytic manifold (cf. [[Complex manifold|Complex manifold]]) or a smooth [[Algebraic variety|algebraic variety]] over  $  \mathbf C $.  
 +
Denote by  $  {\mathcal O} _ {X} $
 +
the structure sheaf of  $  X $.  
 +
The sheaf  $ \mathcal D _ {X} $
 +
of differential operators on  $  X $
 +
is the subsheaf of  $  \mathop{\rm End} _ {\mathbf C }  ( {\mathcal O} _ {X} ) $
 +
generated by  $  {\mathcal O} _ {X} $
 +
and $  \mathop{\rm Der} _ {\mathbf C }  ( {\mathcal O} _ {X} ) $,
 +
the sheaf of  $  \mathbf C $-linear derivations. Hence on a chart  $  U \subset  X $
 +
with coordinates  $  x _ {1} \dots x _ {n} $
 +
an element  $  P \in \Gamma ( U , \mathcal D _ {X} ) $
 +
can be written as a finite sum  $  P = \sum a _ {i _ {1}  \dots i _ {n} } \partial  _ {1} ^ {i _ {1} } \dots \partial  _ {n} ^ {i _ {n} } $,
 +
where  $  a _ {i _ {1}  \dots i _ {n} } \in \Gamma ( U , {\mathcal O} _ {X} ) $
 +
and  $  \partial  _ {i} = \partial  / {\partial  x _ {i} } $.  
 +
In particular in the algebraic case, being a bit more general, if  $  X = \mathop{\rm Spec}  k [ x _ {1} \dots x _ {n} ] $,
 +
where  $  k $
 +
is a field of characteristic zero, then  $  \Gamma ( X ,\mathcal D _ {X} ) = k [ x _ {1} \dots x _ {n} ] [ \partial  _ {1} \dots \partial  _ {n} ] = A _ {n} ( k) $
 +
is the  $  n $-th [[Weyl algebra|Weyl algebra]] over  $  k $.  
 +
The sheaf  $ \mathcal D _ {X} $
 +
is a [[Coherent sheaf|coherent sheaf]] of non-commutative left and right Noetherian rings (cf. [[#References|[a3]]]). The structure sheaf  $  {\mathcal O} _ {X} $
 +
becomes in a natural way a coherent left  $ \mathcal D _ {X} $-module. More generally, let  $  {\mathcal V} $
 +
be a [[Vector bundle|vector bundle]] on  $  X $
 +
with an integrable [[Connection|connection]]  $  \nabla $.  
 +
The  $  {\mathcal O} _ {X} $-structure on  $  {\mathcal V} $
 +
extends to a left  $ \mathcal D _ {X} $-module structure by putting  $  \xi \cdot v = \langle  \nabla _  \xi  , v \rangle $
 +
for all local sections  $  \xi \in  \mathop{\rm Der} _ {\mathbf C }  ( {\mathcal O} _ {X} ) $,
 +
$  v \in {\mathcal V} $.  
 +
Conversely, each left $ \mathcal D _ {X} $-module whose underlying  $  {\mathcal O} _ {X} $-module is coherent is of this form.
  
==Operations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002083.png" />-modules.==
+
Usually one considers only left  $ \mathcal D _ {X} $-modules. This is harmless as one can freely exchange left and right  $ \mathcal D _ {X} $-modules. Namely, the  $  {\mathcal O} _ {X} $-module  $  \Omega _ {X}  ^ {n} $ ($  n = \mathop{\rm dim}  X $)
For an adequate setting of the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002084.png" />-modules the machinery of derived categories and derived functors is indispensable. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002085.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002086.png" />) the category of left (respectively, coherent) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002087.png" />-modules. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002088.png" /> the [[Derived category|derived category]] of bounded complexes of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002089.png" />-modules. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002090.png" /> be a holomorphic mapping between complex analytic (or smooth algebraic) manifolds. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002091.png" /> be a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002092.png" />-module. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002093.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002094.png" /> carries a natural left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002095.png" />-structure. One puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002096.png" />. This is a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002097.png" />-, right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002098.png" />-bimodule. The inverse image functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d03002099.png" /> is then given by
+
of highest-order differential forms on  $  X $
 +
carries a natural structure of a coherent right  $ \mathcal D _ {X} $-module: for all  $  \omega \in \Omega _ {X}  ^ {n} $,  
 +
$  \xi \in  \mathop{\rm Der} _ {\mathbf C }  ( {\mathcal O} _ {X} ) $
 +
one puts  $  \omega \cdot \xi = - L _  \xi  \omega $,
 +
where  $  L _  \xi  $
 +
denotes the [[Lie derivative|Lie derivative]] with respect to  $  \xi $.  
 +
Then  $  \Omega _ {X}  ^ {n} \otimes _ { {\mathcal O} _ {X}  } M $
 +
has a right  $ \mathcal D _ {X} $-structure for any left $ \mathcal D _ {X} $-module $  M $
 +
and  $  \mathop{\rm Hom} _ { {\mathcal O} _ {X}  } ( \Omega _ {X}  ^ {n} , N ) $
 +
has a left $ \mathcal D _ {X} $-structure for any right $ \mathcal D _ {X} $-module  $  N $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020100.png" /></td> </tr></table>
+
Let  $  ( P _ {ij} ) $
 +
be a  $  ( p \times q ) $-matrix with coefficients  $  P _ {ij} \in \Gamma ( X ,\mathcal D _ {X} ) $
 +
and consider the left  $ \mathcal D _ {X} $-linear mapping  $  P : \mathcal D _ {X}  ^ {p} \rightarrow \mathcal D _ {X}  ^ {q} $,
 +
defined by letting the matrix  $  ( P _ {ij} ) $
 +
act from the right on  $ \mathcal D _ {X}  ^ {p} $.
 +
Then  $  M = \mathop{\rm Coker} ( P) $
 +
is a coherent left  $ \mathcal D _ {X} $-module. Clearly,  $  \mathop{\rm Hom} _ {\mathcal D _ {X}  } ( M , {\mathcal O} _ {X} ) = \{ {f \in {\mathcal O} _ {X}  ^ {q} } : {\sum _ {j=1}  ^ {q} P _ {ij} f _ {j} = 0 } \} $.
 +
Thus, holomorphic solutions of the linear system  $  ( P _ {ij} ) u = 0 $
 +
can be interpreted as elements of the  $  \mathbf C $-vector space  $  \mathop{\rm Hom} _ {\mathcal D _ {X}  } ( M, {\mathcal O} _ {X} ) $,
 +
and vice versa. This leads one to consider the derived solution complex  $  \mathsf{ R }  \mathop{\rm Hom} _ {\mathcal D _ {X}  } ( M , {\mathcal O} _ {X} ) $
 +
for any left  $ \mathcal D _ {X} $-module  $  M $.  
 +
Identifying  $  \mathop{\rm Der} _ {\mathbf C }  ( {\mathcal O} _ {X} ) $
 +
with a subsheaf of  $ \mathcal D _ {X} $
 +
enables one to construct the complex  $  \Omega _ {X} ^ { \bullet } \otimes _ { {\mathcal O} _ {X}  } M $.  
 +
It is denoted by  $  \mathop{\rm DR} ( M) $
 +
and is called the de Rham complex of  $  M $.
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020101.png" />.
+
==Operations on  $ \mathcal D $-modules.==
 +
For an adequate setting of the theory of  $ \mathcal D $-modules the machinery of derived categories and derived functors is indispensable. Denote by  $  \mathop{\rm Mod} (\mathcal D _ {X} ) $ (respectively,  $  \mathop{\rm Coh} (\mathcal D _ {X} ) $)
 +
the category of left (respectively, coherent)  $ \mathcal D _ {X} $-modules. Denote by  $  \mathsf{ D } ^ { b} (\mathcal D _ {X} ) $
 +
the [[Derived category|derived category]] of bounded complexes of left  $ \mathcal D _ {X} $-modules. Let  $  f : X \rightarrow Y $
 +
be a holomorphic mapping between complex analytic (or smooth algebraic) manifolds. Let  $  N $
 +
be a left  $ \mathcal D _ {Y} $-module. The  $  {\mathcal O} _ {X} $-module  $  f ^ { * } N = {\mathcal O} _ {X} \otimes _ {f ^ { - 1 }  {\mathcal O} _ {Y} } f ^ { - 1 } N $
 +
carries a natural left  $ \mathcal D _ {X} $-structure. One puts  $ \mathcal D _ {X \rightarrow Y }  = f ^ { * } \mathcal D _ {Y} $.  
 +
This is a left  $ \mathcal D _ {X} $-,
 +
right  $  f ^ { - 1 } \mathcal D _ {Y} $-bimodule. The inverse image functor  $  L f ^ { * } $
 +
is then given by
  
Using the left-right principle yields a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020102.png" />-, right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020103.png" />-bimodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020104.png" />. The direct image functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020105.png" /> is then defined as
+
$$
 +
L f ^ { * } N ^ { \bullet }  = \
 +
\mathcal D _ {X \rightarrow Y }
 +
\otimes _ {f ^ { - 1 } \mathcal D _ {Y} } ^ { L }
 +
f ^ { - 1 } N ^ { \bullet }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020106.png" /></td> </tr></table>
+
for all  $  N ^ { \bullet } \in \mathsf{ D } ^ {b } ( \mathcal D _ {Y} ) $.
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020107.png" />.
+
Using the left-right principle yields a left  $  f ^ { - 1 }\mathcal D _ {Y} $-,
 +
right  $ \mathcal D _ {X} $-bimodule  $ \mathcal D _ {Y \leftarrow X }  $.  
 +
The direct image functor  $  f _ {+} $
 +
is then defined as
  
Frequently one uses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020108.png" /> to denote the direct image. In the algebraic category one has the following result: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020109.png" /> is another morphism, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020110.png" />. In the analytic category the same holds if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020111.png" /> is proper.
+
$$
 +
f _ {+} M ^ { \bullet }  = \
 +
\mathsf{ R } f _ {*} \left ( \mathcal D _ {Y \leftarrow X }
 +
\otimes _ {\mathcal D _ {X} } ^ { L }  M ^ { \bullet } \right )
 +
$$
  
In case of a closed imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020112.png" /> the direct image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020113.png" /> is an [[Exact functor|exact functor]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020114.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020115.png" /> which preserves coherency. In fact one has the following (Kashiwara's equivalence): <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020116.png" /> establishes an equivalence between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020117.png" /> and the category of coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020118.png" />-modules with support contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020119.png" />. In case of a [[Submersion|submersion]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020120.png" /> and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020121.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020122.png" /> the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020123.png" /> of relative differential forms gives rise to the relative de Rham complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020124.png" />. The direct image is then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020125.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020126.png" />.
+
for all  $  M ^ { \bullet } \in \mathsf{ D } ^ { b } ( \mathcal D _ {X} ) $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020127.png" /> be a closed subvariety defined by an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020128.png" />. For any left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020129.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020130.png" /> define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020131.png" />. It is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020132.png" />-submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020133.png" /> consisting of the sections annihilated by some power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020134.png" />. It is an analogue of the usual functor "sections with support" . Its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020135.png" />-th [[Derived functor|derived functor]] is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020136.png" />. Of course, in the algebraic category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020137.png" />.
+
Frequently one uses  $  \int _ {f} M ^ { \bullet } $
 +
to denote the direct image. In the algebraic category one has the following result: If  $  g : Y \rightarrow Z $
 +
is another morphism, then  $  ( g f  ) _ {+} = g _ {+} f _ {+} $.  
 +
In the analytic category the same holds if  $  f $
 +
is proper.
  
==Holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020138.png" />-modules.==
+
In case of a closed imbedding  $  i : X \rightarrow Y $
The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020139.png" /> is filtered by the order of a differential operator. The associated graded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020140.png" /> may be identified with the sheaf of holomorphic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020141.png" /> which are polynomial in the fibres. Since a coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020142.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020143.png" /> is locally of finite presentation, it carries locally a so-called good filtration; cf. [[Filtered module|Filtered module]]. This gives rise, at least locally, to a coherent ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png" />, namely the annihilator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020145.png" />. It turns out that its [[Radical|radical]] does not depend on the filtration, so patches together and yields a radical homogeneous ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020146.png" />. Its locus defines a closed conic subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020147.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020148.png" />, called the singular support or the characteristic variety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020151.png" />. Closely related is the characteristic cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020153.png" />. This is the formal linear combination of the irreducible components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020154.png" /> counted with their multiplicities.
+
the direct image  $  i _ {+} $
 +
is an [[Exact functor|exact functor]] from  $  \mathop{\rm Mod} ( \mathcal D _ {X} ) $
 +
to  $  \mathop{\rm Mod} ( \mathcal D _ {Y} ) $
 +
which preserves coherency. In fact one has the following (Kashiwara's equivalence):  $  i _ {+} $
 +
establishes an equivalence between  $  \mathop{\rm Coh} (\mathcal D _ {X} ) $
 +
and the category of coherent $ \mathcal D _ {Y} $-modules with support contained in $  X $.  
 +
In case of a [[Submersion|submersion]] $  \pi :  X \rightarrow Y $
 +
and a $ \mathcal D _ {X} $-module  $  M \in \mathop{\rm Mod} (\mathcal D _ {X} ) $
 +
the complex  $  \Omega _ {X/Y} ^ { \bullet } $
 +
of relative differential forms gives rise to the relative de Rham complex  $  \mathop{\rm DR} _ {X/Y} ( M) $.  
 +
The direct image is then  $  \pi _ {+} M = \mathsf{ R } \pi _ {*} (  \mathop{\rm DR} _ {X/Y} ( M) ) [ d ] $,
 +
where  $  d = \mathop{\rm dim}  X -  \mathop{\rm dim}  Y $.
  
The cotangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020155.png" /> has the structure of a [[Symplectic manifold|symplectic manifold]]. The following basic result was proved by microlocal analysis by Kashiwara, Kawai and M. Sato at the conference in Katata, 1971: The characteristic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020156.png" /> of a coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020157.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020158.png" /> is involutive. An algebraic proof was given by O. Gabber [[#References|[a5]]]. Instead of "involutive" one uses also "co-isotropic characteristic variety of a D-moduleco-isotropic" . Recall that an involutive subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020159.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020160.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020161.png" />. If equality holds, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020162.png" /> is a [[Lagrangian manifold|Lagrangian manifold]]. Now a non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020163.png" />-module is said to be holonomic if it is coherent and its characteristic variety is Lagrangian. The zero module is also defined to be holonomic. For instance, any vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020165.png" /> with an integrable connection is holonomic since its characteristic variety is the zero-section of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020166.png" />. Furthermore, its the Rham complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020167.png" /> is a local system on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020168.png" />.
+
Let  $  Z \subset  X $
 +
be a closed subvariety defined by an ideal  $  I \subset  {\mathcal O} _ {X} $.  
 +
For any left  $ \mathcal D _ {X} $-module $  M $
 +
define  $  \Gamma _ {[ Z ] }  M = \lim\limits _  \rightarrow    \mathop{\rm Hom} _ { {\mathcal O} _ {X}  } ( {\mathcal O} _ {X} / I  ^ {k} , M ) $.  
 +
It is the  $ \mathcal D _ {X} $-submodule of  $  M $
 +
consisting of the sections annihilated by some power of $  I $.  
 +
It is an analogue of the usual functor "sections with support" . Its  $  i $-th [[Derived functor|derived functor]] is often denoted by  $  {\mathcal H} _ {[ Z] }  ^ {i} $.  
 +
Of course, in the algebraic category  $  \Gamma _ {[ Z]} = \Gamma _ {Z} $.
  
The characteristic variety of a holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020169.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020170.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020171.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020172.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020173.png" /> are the irreducible components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020174.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020175.png" /> denotes the projection. An important property of holonomic modules is the following result of Kashiwara (see, e.g., [[#References|[a7]]]), which says: The de Rham complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020177.png" /> of a holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020178.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020179.png" /> is constructible. Recall that a sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020180.png" /> of vector spaces on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020181.png" /> is called constructible if there exists a [[Stratification|stratification]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020182.png" /> such that the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020183.png" /> to each stratum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020184.png" /> is a local system. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020185.png" /> the derived category of bounded complexes of sheaves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020186.png" />-vector spaces with constructible cohomology. Also the solution complex of a holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020187.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020188.png" /> is constructible since it is isomorphic to the Verdier dual (cf. [[Derived category|Derived category]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020189.png" />. (Cf. [[#References|[a12]]].)
+
==Holonomic  $ \mathcal D $-modules.==
 +
The sheaf  $ \mathcal D _ {X} $
 +
is filtered by the order of a differential operator. The associated graded  $  \mathop{\rm gr} \mathcal D _ {X} $
 +
may be identified with the sheaf of holomorphic functions on  $  T  ^ {*} X $
 +
which are polynomial in the fibres. Since a coherent  $ \mathcal D _ {X} $-module  $  M $
 +
is locally of finite presentation, it carries locally a so-called good filtration; cf. [[Filtered module|Filtered module]]. This gives rise, at least locally, to a coherent ideal in  $  \mathop{\rm gr} \mathcal D _ {X} $,
 +
namely the annihilator of  $  \mathop{\rm gr}  M $.
 +
It turns out that its [[Radical|radical]] does not depend on the filtration, so patches together and yields a radical homogeneous ideal in  $  {\mathcal O} _ {T  ^ {*}  X } $.
 +
Its locus defines a closed conic subvariety  $  \mathop{\rm SS} ( M) $
 +
of  $  T  ^ {*} X $,
 +
called the singular support or the characteristic variety of  $  M $.
 +
Closely related is the characteristic cycle  $  \mathop{\rm char} ( M) $.
 +
This is the formal linear combination of the irreducible components of  $  \mathop{\rm SS} ( M) $
 +
counted with their multiplicities.
 +
 
 +
The cotangent bundle  $  T  ^ {*} X $
 +
has the structure of a [[Symplectic manifold|symplectic manifold]]. The following basic result was proved by microlocal analysis by Kashiwara, Kawai and M. Sato at the conference in Katata, 1971: The characteristic variety  $  \mathop{\rm SS} ( M) $
 +
of a coherent  $ \mathcal D _ {X} $-module $  M \neq 0 $
 +
is involutive. An algebraic proof was given by O. Gabber [[#References|[a5]]]. Instead of "involutive" one uses also "co-isotropic characteristic variety of a D-moduleco-isotropic" . Recall that an involutive subvariety  $  V $
 +
of  $  T  ^ {*} X $
 +
has  $  \mathop{\rm dim}  V \geq  \mathop{\rm dim}  X $.  
 +
If equality holds,  $  V $
 +
is a [[Lagrangian manifold|Lagrangian manifold]]. Now a non-zero  $ \mathcal D _ {X} $-module is said to be holonomic if it is coherent and its characteristic variety is Lagrangian. The zero module is also defined to be holonomic. For instance, any vector bundle  $  {\mathcal V} $
 +
with an integrable connection is holonomic since its characteristic variety is the zero-section of  $  T  ^ {*} X $.  
 +
Furthermore, its the Rham complex  $  \mathop{\rm DR} ( {\mathcal V} ) = \mathop{\rm Ker} ( \nabla , {\mathcal V} ) $
 +
is a local system on  $  X $.
 +
 
 +
The characteristic variety of a holonomic  $ \mathcal D _ {X} $-module  $  M $
 +
is of the form  $  \mathop{\rm SS} ( M) = \cup _  \alpha  {T _ {S _  \alpha  }  ^ {*} X } bar $,
 +
where  $  S _  \alpha  = \pi ( V _  \alpha  ) _ { \mathop{\rm reg}  } $,
 +
the  $  V _  \alpha  $
 +
are the irreducible components of $  \mathop{\rm SS} ( M) $
 +
and $  \pi : T  ^ {*} X \rightarrow X $
 +
denotes the projection. An important property of holonomic modules is the following result of Kashiwara (see, e.g., [[#References|[a7]]]), which says: The de Rham complex $  \mathop{\rm DR} ( M) $
 +
of a holonomic $ \mathcal D _ {X} $-module $  M $
 +
is constructible. Recall that a sheaf $  F $
 +
of vector spaces on $  X $
 +
is called constructible if there exists a [[Stratification|stratification]] $  X = \cup _  \alpha  S _  \alpha  $
 +
such that the restriction of $  F $
 +
to each stratum $  S _  \alpha  $
 +
is a local system. Denote by $  \mathsf{ D } _ {c }  ^ {b } ( X) $
 +
the derived category of bounded complexes of sheaves of $  \mathbf C $-vector spaces with constructible cohomology. Also the solution complex of a holonomic $ \mathcal D _ {X} $-module $  M $
 +
is constructible since it is isomorphic to the Verdier dual (cf. [[Derived category|Derived category]]) of $  \mathop{\rm DR} ( M) $.  
 +
(Cf. [[#References|[a12]]].)
  
 
==The Bernstein–Sato polynomial.==
 
==The Bernstein–Sato polynomial.==
The inverse image of a coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020190.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020191.png" /> is not necessarily a coherent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020192.png" />-module. However, if one assumes that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020193.png" /> is holonomic then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020194.png" /> is also holonomic and, in particular, coherent. Moreover, for each closed subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020195.png" /> and for every holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020196.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020197.png" /> the local cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020198.png" /> is holonomic for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020199.png" />. Closely related to this is the following statement, which has become one of the cornerstones of the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020200.png" />-modules. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020201.png" />. There exists a non-zero polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020202.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020203.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020204.png" />.
+
The inverse image of a coherent $ \mathcal D _ {Y} $-module $  N $
 +
is not necessarily a coherent $ \mathcal D _ {X} $-module. However, if one assumes that $  N $
 +
is holonomic then $  f ^ { * } N $
 +
is also holonomic and, in particular, coherent. Moreover, for each closed subvariety $  Z \subset  X $
 +
and for every holonomic $ \mathcal D _ {X} $-module $  M $
 +
the local cohomology $  H _ {[ Z ] }  ^ {j} M $
 +
is holonomic for all $  j $.  
 +
Closely related to this is the following statement, which has become one of the cornerstones of the theory of $  D $-modules. Let $  f \in {\mathcal O} _ {X} $.  
 +
There exists a non-zero polynomial $  b ( s) $
 +
and $  P ( s) \in \mathcal D _ {X} [ s ] $
 +
such that $  P ( s) f ^ { s+ 1 } = b ( s) f ^ { s } $.
  
The monic polynomial of lowest degree which satisfies this is called the Bernstein–Sato polynomial or the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020206.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020207.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020208.png" />. This result has been proved by Bernstein in the algebraic case and by Björk in the analytic case. Kashiwara proved that the roots of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020211.png" />-function are rational numbers. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020212.png" /> is a germ of a holomorphic function, Malgrange proved that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020214.png" /> contains all the eigen values of the monodromy in all dimensions. There is also the work of D. Barlet; for instance, in [[#References|[a1]]] he proves that the roots of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020216.png" />-function produce poles of the meromorphic continuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020217.png" />. More precisely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020218.png" /> is a root of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020219.png" />, then there exists an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020220.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020221.png" /> is a pole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020222.png" /> for every non-negative integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020223.png" />. Finally, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020224.png" />-function is related to the [[Vanishing cycle|vanishing cycle]] functor of P. Deligne. For this see, e.g., [[#References|[a11]]].
+
The monic polynomial of lowest degree which satisfies this is called the Bernstein–Sato polynomial or the $  b $-function $  b _ {f} ( s) $
 +
of $  f $.  
 +
This result has been proved by Bernstein in the algebraic case and by Björk in the analytic case. Kashiwara proved that the roots of the $  b $-function are rational numbers. If $  f :  ( \mathbf C  ^ {n+1} , 0 ) \rightarrow ( \mathbf C , 0 ) $
 +
is a germ of a holomorphic function, Malgrange proved that the set $  \{ { \mathop{\rm exp} ( 2 \pi i \alpha ) } : {\alpha  \textrm{ a  root  of  }  b _ {f} ( s) } \} $
 +
contains all the eigen values of the monodromy in all dimensions. There is also the work of D. Barlet; for instance, in [[#References|[a1]]] he proves that the roots of the $  b $-function produce poles of the meromorphic continuation of $  | f | ^ {2 \lambda } $.  
 +
More precisely, if $  \alpha $
 +
is a root of $  b _ {f} ( s) $,  
 +
then there exists an integer $  N $
 +
such that $  \alpha - N - \nu $
 +
is a pole of $  | f | ^ {2 \lambda } $
 +
for every non-negative integer $  \nu $.  
 +
Finally, the $  b $-function is related to the [[Vanishing cycle|vanishing cycle]] functor of P. Deligne. For this see, e.g., [[#References|[a11]]].
  
==Regular holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020225.png" />-modules.==
+
==Regular holonomic $  D $-modules.==
The notion of regular singularities is classical in the one-dimensional case (cf. [[Regular singular point|Regular singular point]]). Recall that a [[Differential operator|differential operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020226.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020227.png" />, defined in a neighbourhood of 0 in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020228.png" /> is said to have a regular singularity at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020229.png" /> if the multi-valued solutions of the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020230.png" /> have a moderate growth. By a classical theorem of Fuchs this is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020231.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020232.png" />. An equivalent formulation due to Malgrange is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020233.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020234.png" /> is the formal completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020235.png" />. The index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020236.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020237.png" />. See, for instance, [[#References|[a4]]], Chapts. 3, 4. The notion of regularity has been generalized to higher dimensions by Deligne. Generalizations to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020238.png" />-modules are due to Kashiwara, Mebkhout, Oshima, and J.-P. Ramis. There are various equivalent definitions of regularity in the literature, of which the following is given here: A holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020239.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020240.png" /> is said to have regular singularities if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020242.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020243.png" />.
+
The notion of regular singularities is classical in the one-dimensional case (cf. [[Regular singular point|Regular singular point]]). Recall that a [[Differential operator|differential operator]] $  P = a _ {0} \partial  ^ {m} + \dots + a _ {m} $,  
 +
$  a _ {0} \neq 0 $,  
 +
defined in a neighbourhood of 0 in $  \mathbf C $
 +
is said to have a regular singularity at 0 $
 +
if the multi-valued solutions of the differential equation $  P u = 0 $
 +
have a moderate growth. By a classical theorem of Fuchs this is equivalent to $  \mathop{\rm ord} ( a _ {i} / a _ {0} ) \geq  - i $
 +
for all $  i $.  
 +
An equivalent formulation due to Malgrange is that $  \chi ( P , {\mathcal O} ) = \chi ( P , \widehat{ {\mathcal O} }  ) $,  
 +
where $  \widehat{ {\mathcal O} }  $
 +
is the formal completion of $  {\mathcal O} = \mathbf C \{ z \} $.  
 +
The index $  \chi $
 +
is defined as $  \chi ( A , {\mathcal F} ) = \sum (- 1)  ^ {i}  \mathop{\rm dim} _ {\mathbf C }  \mathop{\rm Ext} _ {D}  ^ {i} ( A , {\mathcal F} ) $.  
 +
See, for instance, [[#References|[a4]]], Chapts. 3, 4. The notion of regularity has been generalized to higher dimensions by Deligne. Generalizations to $  D $-modules are due to Kashiwara, Mebkhout, Oshima, and J.-P. Ramis. There are various equivalent definitions of regularity in the literature, of which the following is given here: A holonomic $ \mathcal D _ {X} $-module $  M $
 +
is said to have regular singularities if $  \chi ( M _ {x} , {\mathcal O} _ {X,x }  ) = \chi ( M _ {x} , \widehat{ {\mathcal O} }  _ {X ,x }  ) $
 +
for all $  x \in X $.
  
Note that in the algebraic category one requires that the points "at infinity" are regular. (Cf. [[#References|[a4]]], Chapt. 7 for a definition due to Bernstein.) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020244.png" /> be a smooth algebraic variety and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020245.png" /> be a smooth completion. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020246.png" /> be a holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020247.png" />-module. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020248.png" /> is regular if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020249.png" /> is regular. Via GAGA this amounts to the regularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020250.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020251.png" />, the underlying complex analytic manifold. In the algebraic case regularity is preserved under direct or inverse images. In the analytic case the direct image functor preserves regular holonomicity under proper mappings (cf. [[#References|[a9]]]). See [[#References|[a6]]] for a result on the non-proper case. The inverse image functor preserves regularity. For any closed subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020252.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020253.png" /> a regular holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020254.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020255.png" /> has regular singularities for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020256.png" />.
+
Note that in the algebraic category one requires that the points "at infinity" are regular. (Cf. [[#References|[a4]]], Chapt. 7 for a definition due to Bernstein.) Let $  X $
 +
be a smooth algebraic variety and let $  j : X \rightarrow \overline{X}\; $
 +
be a smooth completion. Let $  M $
 +
be a holonomic $ \mathcal D _ {X} $-module. Then $  M $
 +
is regular if and only if $  j _ {*} M $
 +
is regular. Via GAGA this amounts to the regularity of $  ( j _ {*} M ) ^ {\textrm{an} } $
 +
on $  ( \overline{X} ) ^ {\textrm{an } } $,  
 +
the underlying complex analytic manifold. In the algebraic case regularity is preserved under direct or inverse images. In the analytic case the direct image functor preserves regular holonomicity under proper mappings (cf. [[#References|[a9]]]). See [[#References|[a6]]] for a result on the non-proper case. The inverse image functor preserves regularity. For any closed subspace $  Z \subset  X $
 +
and any $  M $
 +
a regular holonomic $ \mathcal D _ {X} $-module $  H _ {[ Z] }  ^ {j} ( M) $
 +
has regular singularities for all $  j $.
  
 
==The Riemann–Hilbert correspondence.==
 
==The Riemann–Hilbert correspondence.==
It asserts that: The de Rham functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020257.png" /> establishes an equivalence of categories between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020258.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020259.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020260.png" /> denotes the derived category of bounded complexes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020261.png" />-modules with regular holonomic cohomology. This result is independently due to Kashiwara, Kawai (cf. [[#References|[a8]]], [[#References|[a9]]]) and Mebkhout [[#References|[a13]]]. It is tacitly assumed here that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020262.png" /> is analytic. In the algebraic case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020263.png" /> has to replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020264.png" /> (cf. [[#References|[a4]]]). This correspondence is one of the highlights in the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020265.png" />-modules. It establishes a bridge between analytic objects (regular holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020266.png" />-modules) and geometric ones (constructible sheaves).
+
It asserts that: The de Rham functor $  \mathop{\rm DR} $
 +
establishes an equivalence of categories between $  \mathsf{ D } _ { \mathop{\rm rh}  } ^ {b } (\mathcal D _ {X} ) $
 +
and $  \mathsf{ D } _ {c }  ^ {b } ( X) $.  
 +
Here $  \mathsf{ D } _ { \mathop{\rm rh}  } ^ {b } (\mathcal D _ {X} ) $
 +
denotes the derived category of bounded complexes of $ \mathcal D _ {X} $-modules with regular holonomic cohomology. This result is independently due to Kashiwara, Kawai (cf. [[#References|[a8]]], [[#References|[a9]]]) and Mebkhout [[#References|[a13]]]. It is tacitly assumed here that $  X $
 +
is analytic. In the algebraic case $  \mathsf{ D } _ { c }  ^ { b } ( X) $
 +
has to replaced by $  \mathsf{ D } _ { c }  ^ { b } ( X ^ {\textrm{an} } ) $ (cf. [[#References|[a4]]]). This correspondence is one of the highlights in the theory of $  D $-modules. It establishes a bridge between analytic objects (regular holonomic $  D $-modules) and geometric ones (constructible sheaves).
  
 
==Perverse sheaves.==
 
==Perverse sheaves.==
A constructible sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020267.png" /> is called a perverse sheaf if 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020268.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020269.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020270.png" />; 2) the Verdier dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020271.png" /> also satisfies 1). Then the Riemann–Hilbert correspondence induces an equivalence between the category of regular holonomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020272.png" />-modules and the category of perverse sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020273.png" />. An example of a perverse sheaf is the intersection cohomology complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020274.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020275.png" /> is a closed analytic subspace. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020276.png" /> is projective it has been conjectured that the intersection cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020277.png" /> carry a pure Hodge structure. Using the framework of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020278.png" />-modules this has been confirmed by M. Saito (cf. [[#References|[a16]]], [[#References|[a17]]]). He also gives an analytic proof of the decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber.
+
A constructible sheaf $  F ^ { \bullet } \in \mathsf{ D } _ { c }  ^ { b } ( X) $
 +
is called a perverse sheaf if 1) $  H  ^ {i} ( F ^ { \bullet } ) = 0 $
 +
for $  i < 0 $
 +
and $  \textrm{ codim  supp  } ( H  ^ {i} ( F ^ { \bullet } ) ) \geq  i $;  
 +
2) the Verdier dual $  ( F ^ { \bullet } )  ^ {*} $
 +
also satisfies 1). Then the Riemann–Hilbert correspondence induces an equivalence between the category of regular holonomic $ \mathcal D _ {X} $-modules and the category of perverse sheaves on $  X $.  
 +
An example of a perverse sheaf is the intersection cohomology complex $  I C _ {Y} ^ { \bullet } $,  
 +
where $  Y \subset  X $
 +
is a closed analytic subspace. In case $  Y $
 +
is projective it has been conjectured that the intersection cohomology groups $  I H ^ { \bullet } ( Y) $
 +
carry a pure Hodge structure. Using the framework of $ \mathcal D $-modules this has been confirmed by M. Saito (cf. [[#References|[a16]]], [[#References|[a17]]]). He also gives an analytic proof of the decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Barlet, "Monodromie et pôles du prolongement méromorphe de <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020279.png" />" ''Bull. Soc. Math. France'' , '''114''' (1986) pp. 247–269 {{MR|0878239}} {{ZBL|0652.32010}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.-E. Björk, "Analytic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020280.png" />-modules" , Kluwer (1993) {{MR|1232191}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-E. Björk, "Rings of differential operators" , North-Holland (1979) {{MR|0549189}} {{ZBL|0499.13009}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Borel, et al., "Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020281.png" />-modules" , Acad. Press (1987) {{MR|882000}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> O. Gabber, "The integrability of the characteristic variety" ''Amer. J. Math.'' , '''103''' (1981) pp. 445–468 {{MR|0618321}} {{ZBL|0492.16002}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> C. Houzel, P. Schapira, "Images directes de modules différentiels" ''C.R. Acad. Paris Sér. I Math.'' , '''298''' (1984) pp. 461–464 {{MR|0750746}} {{ZBL|0582.14004}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> M. Kashiwara, "Systems of microdifferential equations" , Birkhäuser (1983) (Translated from French) {{MR|0725502}} {{ZBL|0521.58057}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> M. Kashiwara, "The Riemann–Hilbert problem for holonomic systems" ''Publ. Res. Inst. Math. Sci.'' , '''20''' (1984) pp. 319–365 {{MR|0743382}} {{ZBL|0566.32023}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Kashiwara, T. Kawai, "On the holonomic systems of micro-differential equations III" ''Publ. Res. Inst. Math. Sci.'' , '''17''' (1981) pp. 813–979</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> D.T. Lê, Z. Mebkhout, "Introduction to linear differential systems" P. Orlik (ed.) , ''Singularities'' , ''Proc. Symp. Pure Math.'' , '''40.2''' , Amer. Math. Soc. (1983) pp. 31–63 {{MR|713237}} {{ZBL|0521.14006}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Malgrange, "Polynômes de Bernstein–Sato et cohomologie évanescente" ''Astérisque. Analyse et topologie sur les espaces singuliers (II-III)'' , '''101–102''' (1983) pp. 243–267 {{MR|}} {{ZBL|0528.32007}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> Z. Mebkhout, "Théorèmes de bidualité locale pour les <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020282.png" />-modules holonomes" ''Ark. Mat.'' , '''20''' (1982) pp. 111–124 {{MR|660129}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> Z. Mebkhout, "Une autre équivalence de catégories" ''Compos. Math.'' , '''51''' (1984) pp. 63–88 {{MR|0734785}} {{ZBL|0566.32021}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> T. Oda, "Introduction to algebraic analysis on complex manifolds" S. Iitaka (ed.) , ''Algebraic varieties and analytic varieties'' , North-Holland (1983) pp. 29–48 {{MR|0715644}} {{ZBL|0512.14008}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> F. Pham, "Singularités des systèmes différentiels de Gauss–Manin" , Birkhäuser (1979) {{MR|553954}} {{ZBL|0524.32015}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> M. Saito, "Hodge structure via filtered <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020283.png" />-modules" ''Astérisque. Systèmes différentiels et singularités'' , '''130''' (1985) pp. 342–351</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> M. Saito, "Modules de Hodge polarisables" ''Preprint RIMS'' , '''553''' (1986) {{MR|1000123}} {{ZBL|0691.14007}} </TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> P. Schapira, "Microdifferential systems in the complex domain" , Springer (1985) {{MR|0774228}} {{ZBL|0554.32022}} </TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Barlet, "Monodromie et pôles du prolongement méromorphe de $\int_X |f|^{2\lambda}$" ''Bull. Soc. Math. France'' , '''114''' (1986) pp. 247–269 {{MR|0878239}} {{ZBL|0652.32010}} </TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> J.-E. Björk, "Analytic $D$-modules" , Kluwer (1993) {{MR|1232191}} {{ZBL|}} </TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-E. Björk, "Rings of differential operators" , North-Holland (1979) {{MR|0549189}} {{ZBL|0499.13009}} </TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Borel, et al., "Algebraic $D$-modules" , Acad. Press (1987) {{MR|882000}} {{ZBL|}} </TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top"> O. Gabber, "The integrability of the characteristic variety" ''Amer. J. Math.'' , '''103''' (1981) pp. 445–468 {{MR|0618321}} {{ZBL|0492.16002}} </TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top"> C. Houzel, P. Schapira, "Images directes de modules différentiels" ''C.R. Acad. Paris Sér. I Math.'' , '''298''' (1984) pp. 461–464 {{MR|0750746}} {{ZBL|0582.14004}} </TD></TR>
 +
<TR><TD valign="top">[a7]</TD> <TD valign="top"> M. Kashiwara, "Systems of microdifferential equations" , Birkhäuser (1983) (Translated from French) {{MR|0725502}} {{ZBL|0521.58057}} </TD></TR>
 +
<TR><TD valign="top">[a8]</TD> <TD valign="top"> M. Kashiwara, "The Riemann–Hilbert problem for holonomic systems" ''Publ. Res. Inst. Math. Sci.'' , '''20''' (1984) pp. 319–365 {{MR|0743382}} {{ZBL|0566.32023}} </TD></TR>
 +
<TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Kashiwara, T. Kawai, "On the holonomic systems of micro-differential equations III" ''Publ. Res. Inst. Math. Sci.'' , '''17''' (1981) pp. 813–979</TD></TR>
 +
<TR><TD valign="top">[a10]</TD> <TD valign="top"> D.T. Lê, Z. Mebkhout, "Introduction to linear differential systems" P. Orlik (ed.) , ''Singularities'' , ''Proc. Symp. Pure Math.'' , '''40.2''' , Amer. Math. Soc. (1983) pp. 31–63 {{MR|713237}} {{ZBL|0521.14006}} </TD></TR>
 +
<TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Malgrange, "Polynômes de Bernstein–Sato et cohomologie évanescente" ''Astérisque. Analyse et topologie sur les espaces singuliers (II-III)'' , '''101–102''' (1983) pp. 243–267 {{MR|}} {{ZBL|0528.32007}} </TD></TR>
 +
<TR><TD valign="top">[a12]</TD> <TD valign="top"> Z. Mebkhout, "Théorèmes de bidualité locale pour les $D_X$-modules holonomes" ''Ark. Mat.'' , '''20''' (1982) pp. 111–124 {{MR|660129}} {{ZBL|}} </TD></TR>
 +
<TR><TD valign="top">[a13]</TD> <TD valign="top"> Z. Mebkhout, "Une autre équivalence de catégories" ''Compos. Math.'' , '''51''' (1984) pp. 63–88 {{MR|0734785}} {{ZBL|0566.32021}} </TD></TR>
 +
<TR><TD valign="top">[a14]</TD> <TD valign="top"> T. Oda, "Introduction to algebraic analysis on complex manifolds" S. Iitaka (ed.) , ''Algebraic varieties and analytic varieties'' , North-Holland (1983) pp. 29–48 {{MR|0715644}} {{ZBL|0512.14008}} </TD></TR>
 +
<TR><TD valign="top">[a15]</TD> <TD valign="top"> F. Pham, "Singularités des systèmes différentiels de Gauss–Manin" , Birkhäuser (1979) {{MR|553954}} {{ZBL|0524.32015}} </TD></TR>
 +
<TR><TD valign="top">[a16]</TD> <TD valign="top"> M. Saito, "Hodge structure via filtered $D$-modules" ''Astérisque. Systèmes différentiels et singularités'' , '''130''' (1985) pp. 342–351</TD></TR>
 +
<TR><TD valign="top">[a17]</TD> <TD valign="top"> M. Saito, "Modules de Hodge polarisables" ''Preprint RIMS'' , '''553''' (1986) {{MR|1000123}} {{ZBL|0691.14007}} </TD></TR>
 +
<TR><TD valign="top">[a18]</TD> <TD valign="top"> P. Schapira, "Microdifferential systems in the complex domain" , Springer (1985) {{MR|0774228}} {{ZBL|0554.32022}} </TD></TR>
 +
</table>

Latest revision as of 07:03, 10 May 2022


The theory of $ \mathcal D $-modules is an algebraic formalism of the theory of linear partial differential equations (cf. Linear partial differential equation). It is concerned with modules over rings of differential operators (cf. Module) and has been developed by I.N. Bernstein, J.-E. Björk, M. Kashiwara, T. Kawai, B. Malgrange, Z. Mebkhout, and others. Lately the theory of $ \mathcal D $-modules has found applications in several parts of mathematics, e.g., cohomology of singular spaces, Hodge structure on intersection cohomology, singularity theory (cf. Singularities of differentiable mappings), Gauss–Manin connection, representation theory, and Kazhdan–Lusztig conjectures. Two survey articles on the theory of $ \mathcal D $-modules are [a10] and [a14]. There is a very elegant theory of $ \mathcal D $-modules in case the underlying manifolds are algebraic (cf. [a4]). An illuminating account of the analytic theory may be found in [a15] (cf. also [a2], [a3]). A powerful technique is to work microlocally and introduce microdifferential operators (cf. [a7], [a9], [a18]). However, microlocal results related to $ \mathcal D $-modules will not be presented below.

Henceforth, let $ X $ denote a complex analytic manifold (cf. Complex manifold) or a smooth algebraic variety over $ \mathbf C $. Denote by $ {\mathcal O} _ {X} $ the structure sheaf of $ X $. The sheaf $ \mathcal D _ {X} $ of differential operators on $ X $ is the subsheaf of $ \mathop{\rm End} _ {\mathbf C } ( {\mathcal O} _ {X} ) $ generated by $ {\mathcal O} _ {X} $ and $ \mathop{\rm Der} _ {\mathbf C } ( {\mathcal O} _ {X} ) $, the sheaf of $ \mathbf C $-linear derivations. Hence on a chart $ U \subset X $ with coordinates $ x _ {1} \dots x _ {n} $ an element $ P \in \Gamma ( U , \mathcal D _ {X} ) $ can be written as a finite sum $ P = \sum a _ {i _ {1} \dots i _ {n} } \partial _ {1} ^ {i _ {1} } \dots \partial _ {n} ^ {i _ {n} } $, where $ a _ {i _ {1} \dots i _ {n} } \in \Gamma ( U , {\mathcal O} _ {X} ) $ and $ \partial _ {i} = \partial / {\partial x _ {i} } $. In particular in the algebraic case, being a bit more general, if $ X = \mathop{\rm Spec} k [ x _ {1} \dots x _ {n} ] $, where $ k $ is a field of characteristic zero, then $ \Gamma ( X ,\mathcal D _ {X} ) = k [ x _ {1} \dots x _ {n} ] [ \partial _ {1} \dots \partial _ {n} ] = A _ {n} ( k) $ is the $ n $-th Weyl algebra over $ k $. The sheaf $ \mathcal D _ {X} $ is a coherent sheaf of non-commutative left and right Noetherian rings (cf. [a3]). The structure sheaf $ {\mathcal O} _ {X} $ becomes in a natural way a coherent left $ \mathcal D _ {X} $-module. More generally, let $ {\mathcal V} $ be a vector bundle on $ X $ with an integrable connection $ \nabla $. The $ {\mathcal O} _ {X} $-structure on $ {\mathcal V} $ extends to a left $ \mathcal D _ {X} $-module structure by putting $ \xi \cdot v = \langle \nabla _ \xi , v \rangle $ for all local sections $ \xi \in \mathop{\rm Der} _ {\mathbf C } ( {\mathcal O} _ {X} ) $, $ v \in {\mathcal V} $. Conversely, each left $ \mathcal D _ {X} $-module whose underlying $ {\mathcal O} _ {X} $-module is coherent is of this form.

Usually one considers only left $ \mathcal D _ {X} $-modules. This is harmless as one can freely exchange left and right $ \mathcal D _ {X} $-modules. Namely, the $ {\mathcal O} _ {X} $-module $ \Omega _ {X} ^ {n} $ ($ n = \mathop{\rm dim} X $) of highest-order differential forms on $ X $ carries a natural structure of a coherent right $ \mathcal D _ {X} $-module: for all $ \omega \in \Omega _ {X} ^ {n} $, $ \xi \in \mathop{\rm Der} _ {\mathbf C } ( {\mathcal O} _ {X} ) $ one puts $ \omega \cdot \xi = - L _ \xi \omega $, where $ L _ \xi $ denotes the Lie derivative with respect to $ \xi $. Then $ \Omega _ {X} ^ {n} \otimes _ { {\mathcal O} _ {X} } M $ has a right $ \mathcal D _ {X} $-structure for any left $ \mathcal D _ {X} $-module $ M $ and $ \mathop{\rm Hom} _ { {\mathcal O} _ {X} } ( \Omega _ {X} ^ {n} , N ) $ has a left $ \mathcal D _ {X} $-structure for any right $ \mathcal D _ {X} $-module $ N $.

Let $ ( P _ {ij} ) $ be a $ ( p \times q ) $-matrix with coefficients $ P _ {ij} \in \Gamma ( X ,\mathcal D _ {X} ) $ and consider the left $ \mathcal D _ {X} $-linear mapping $ P : \mathcal D _ {X} ^ {p} \rightarrow \mathcal D _ {X} ^ {q} $, defined by letting the matrix $ ( P _ {ij} ) $ act from the right on $ \mathcal D _ {X} ^ {p} $. Then $ M = \mathop{\rm Coker} ( P) $ is a coherent left $ \mathcal D _ {X} $-module. Clearly, $ \mathop{\rm Hom} _ {\mathcal D _ {X} } ( M , {\mathcal O} _ {X} ) = \{ {f \in {\mathcal O} _ {X} ^ {q} } : {\sum _ {j=1} ^ {q} P _ {ij} f _ {j} = 0 } \} $. Thus, holomorphic solutions of the linear system $ ( P _ {ij} ) u = 0 $ can be interpreted as elements of the $ \mathbf C $-vector space $ \mathop{\rm Hom} _ {\mathcal D _ {X} } ( M, {\mathcal O} _ {X} ) $, and vice versa. This leads one to consider the derived solution complex $ \mathsf{ R } \mathop{\rm Hom} _ {\mathcal D _ {X} } ( M , {\mathcal O} _ {X} ) $ for any left $ \mathcal D _ {X} $-module $ M $. Identifying $ \mathop{\rm Der} _ {\mathbf C } ( {\mathcal O} _ {X} ) $ with a subsheaf of $ \mathcal D _ {X} $ enables one to construct the complex $ \Omega _ {X} ^ { \bullet } \otimes _ { {\mathcal O} _ {X} } M $. It is denoted by $ \mathop{\rm DR} ( M) $ and is called the de Rham complex of $ M $.

Operations on $ \mathcal D $-modules.

For an adequate setting of the theory of $ \mathcal D $-modules the machinery of derived categories and derived functors is indispensable. Denote by $ \mathop{\rm Mod} (\mathcal D _ {X} ) $ (respectively, $ \mathop{\rm Coh} (\mathcal D _ {X} ) $) the category of left (respectively, coherent) $ \mathcal D _ {X} $-modules. Denote by $ \mathsf{ D } ^ { b} (\mathcal D _ {X} ) $ the derived category of bounded complexes of left $ \mathcal D _ {X} $-modules. Let $ f : X \rightarrow Y $ be a holomorphic mapping between complex analytic (or smooth algebraic) manifolds. Let $ N $ be a left $ \mathcal D _ {Y} $-module. The $ {\mathcal O} _ {X} $-module $ f ^ { * } N = {\mathcal O} _ {X} \otimes _ {f ^ { - 1 } {\mathcal O} _ {Y} } f ^ { - 1 } N $ carries a natural left $ \mathcal D _ {X} $-structure. One puts $ \mathcal D _ {X \rightarrow Y } = f ^ { * } \mathcal D _ {Y} $. This is a left $ \mathcal D _ {X} $-, right $ f ^ { - 1 } \mathcal D _ {Y} $-bimodule. The inverse image functor $ L f ^ { * } $ is then given by

$$ L f ^ { * } N ^ { \bullet } = \ \mathcal D _ {X \rightarrow Y } \otimes _ {f ^ { - 1 } \mathcal D _ {Y} } ^ { L } f ^ { - 1 } N ^ { \bullet } $$

for all $ N ^ { \bullet } \in \mathsf{ D } ^ {b } ( \mathcal D _ {Y} ) $.

Using the left-right principle yields a left $ f ^ { - 1 }\mathcal D _ {Y} $-, right $ \mathcal D _ {X} $-bimodule $ \mathcal D _ {Y \leftarrow X } $. The direct image functor $ f _ {+} $ is then defined as

$$ f _ {+} M ^ { \bullet } = \ \mathsf{ R } f _ {*} \left ( \mathcal D _ {Y \leftarrow X } \otimes _ {\mathcal D _ {X} } ^ { L } M ^ { \bullet } \right ) $$

for all $ M ^ { \bullet } \in \mathsf{ D } ^ { b } ( \mathcal D _ {X} ) $.

Frequently one uses $ \int _ {f} M ^ { \bullet } $ to denote the direct image. In the algebraic category one has the following result: If $ g : Y \rightarrow Z $ is another morphism, then $ ( g f ) _ {+} = g _ {+} f _ {+} $. In the analytic category the same holds if $ f $ is proper.

In case of a closed imbedding $ i : X \rightarrow Y $ the direct image $ i _ {+} $ is an exact functor from $ \mathop{\rm Mod} ( \mathcal D _ {X} ) $ to $ \mathop{\rm Mod} ( \mathcal D _ {Y} ) $ which preserves coherency. In fact one has the following (Kashiwara's equivalence): $ i _ {+} $ establishes an equivalence between $ \mathop{\rm Coh} (\mathcal D _ {X} ) $ and the category of coherent $ \mathcal D _ {Y} $-modules with support contained in $ X $. In case of a submersion $ \pi : X \rightarrow Y $ and a $ \mathcal D _ {X} $-module $ M \in \mathop{\rm Mod} (\mathcal D _ {X} ) $ the complex $ \Omega _ {X/Y} ^ { \bullet } $ of relative differential forms gives rise to the relative de Rham complex $ \mathop{\rm DR} _ {X/Y} ( M) $. The direct image is then $ \pi _ {+} M = \mathsf{ R } \pi _ {*} ( \mathop{\rm DR} _ {X/Y} ( M) ) [ d ] $, where $ d = \mathop{\rm dim} X - \mathop{\rm dim} Y $.

Let $ Z \subset X $ be a closed subvariety defined by an ideal $ I \subset {\mathcal O} _ {X} $. For any left $ \mathcal D _ {X} $-module $ M $ define $ \Gamma _ {[ Z ] } M = \lim\limits _ \rightarrow \mathop{\rm Hom} _ { {\mathcal O} _ {X} } ( {\mathcal O} _ {X} / I ^ {k} , M ) $. It is the $ \mathcal D _ {X} $-submodule of $ M $ consisting of the sections annihilated by some power of $ I $. It is an analogue of the usual functor "sections with support" . Its $ i $-th derived functor is often denoted by $ {\mathcal H} _ {[ Z] } ^ {i} $. Of course, in the algebraic category $ \Gamma _ {[ Z]} = \Gamma _ {Z} $.

Holonomic $ \mathcal D $-modules.

The sheaf $ \mathcal D _ {X} $ is filtered by the order of a differential operator. The associated graded $ \mathop{\rm gr} \mathcal D _ {X} $ may be identified with the sheaf of holomorphic functions on $ T ^ {*} X $ which are polynomial in the fibres. Since a coherent $ \mathcal D _ {X} $-module $ M $ is locally of finite presentation, it carries locally a so-called good filtration; cf. Filtered module. This gives rise, at least locally, to a coherent ideal in $ \mathop{\rm gr} \mathcal D _ {X} $, namely the annihilator of $ \mathop{\rm gr} M $. It turns out that its radical does not depend on the filtration, so patches together and yields a radical homogeneous ideal in $ {\mathcal O} _ {T ^ {*} X } $. Its locus defines a closed conic subvariety $ \mathop{\rm SS} ( M) $ of $ T ^ {*} X $, called the singular support or the characteristic variety of $ M $. Closely related is the characteristic cycle $ \mathop{\rm char} ( M) $. This is the formal linear combination of the irreducible components of $ \mathop{\rm SS} ( M) $ counted with their multiplicities.

The cotangent bundle $ T ^ {*} X $ has the structure of a symplectic manifold. The following basic result was proved by microlocal analysis by Kashiwara, Kawai and M. Sato at the conference in Katata, 1971: The characteristic variety $ \mathop{\rm SS} ( M) $ of a coherent $ \mathcal D _ {X} $-module $ M \neq 0 $ is involutive. An algebraic proof was given by O. Gabber [a5]. Instead of "involutive" one uses also "co-isotropic characteristic variety of a D-moduleco-isotropic" . Recall that an involutive subvariety $ V $ of $ T ^ {*} X $ has $ \mathop{\rm dim} V \geq \mathop{\rm dim} X $. If equality holds, $ V $ is a Lagrangian manifold. Now a non-zero $ \mathcal D _ {X} $-module is said to be holonomic if it is coherent and its characteristic variety is Lagrangian. The zero module is also defined to be holonomic. For instance, any vector bundle $ {\mathcal V} $ with an integrable connection is holonomic since its characteristic variety is the zero-section of $ T ^ {*} X $. Furthermore, its the Rham complex $ \mathop{\rm DR} ( {\mathcal V} ) = \mathop{\rm Ker} ( \nabla , {\mathcal V} ) $ is a local system on $ X $.

The characteristic variety of a holonomic $ \mathcal D _ {X} $-module $ M $ is of the form $ \mathop{\rm SS} ( M) = \cup _ \alpha {T _ {S _ \alpha } ^ {*} X } bar $, where $ S _ \alpha = \pi ( V _ \alpha ) _ { \mathop{\rm reg} } $, the $ V _ \alpha $ are the irreducible components of $ \mathop{\rm SS} ( M) $ and $ \pi : T ^ {*} X \rightarrow X $ denotes the projection. An important property of holonomic modules is the following result of Kashiwara (see, e.g., [a7]), which says: The de Rham complex $ \mathop{\rm DR} ( M) $ of a holonomic $ \mathcal D _ {X} $-module $ M $ is constructible. Recall that a sheaf $ F $ of vector spaces on $ X $ is called constructible if there exists a stratification $ X = \cup _ \alpha S _ \alpha $ such that the restriction of $ F $ to each stratum $ S _ \alpha $ is a local system. Denote by $ \mathsf{ D } _ {c } ^ {b } ( X) $ the derived category of bounded complexes of sheaves of $ \mathbf C $-vector spaces with constructible cohomology. Also the solution complex of a holonomic $ \mathcal D _ {X} $-module $ M $ is constructible since it is isomorphic to the Verdier dual (cf. Derived category) of $ \mathop{\rm DR} ( M) $. (Cf. [a12].)

The Bernstein–Sato polynomial.

The inverse image of a coherent $ \mathcal D _ {Y} $-module $ N $ is not necessarily a coherent $ \mathcal D _ {X} $-module. However, if one assumes that $ N $ is holonomic then $ f ^ { * } N $ is also holonomic and, in particular, coherent. Moreover, for each closed subvariety $ Z \subset X $ and for every holonomic $ \mathcal D _ {X} $-module $ M $ the local cohomology $ H _ {[ Z ] } ^ {j} M $ is holonomic for all $ j $. Closely related to this is the following statement, which has become one of the cornerstones of the theory of $ D $-modules. Let $ f \in {\mathcal O} _ {X} $. There exists a non-zero polynomial $ b ( s) $ and $ P ( s) \in \mathcal D _ {X} [ s ] $ such that $ P ( s) f ^ { s+ 1 } = b ( s) f ^ { s } $.

The monic polynomial of lowest degree which satisfies this is called the Bernstein–Sato polynomial or the $ b $-function $ b _ {f} ( s) $ of $ f $. This result has been proved by Bernstein in the algebraic case and by Björk in the analytic case. Kashiwara proved that the roots of the $ b $-function are rational numbers. If $ f : ( \mathbf C ^ {n+1} , 0 ) \rightarrow ( \mathbf C , 0 ) $ is a germ of a holomorphic function, Malgrange proved that the set $ \{ { \mathop{\rm exp} ( 2 \pi i \alpha ) } : {\alpha \textrm{ a root of } b _ {f} ( s) } \} $ contains all the eigen values of the monodromy in all dimensions. There is also the work of D. Barlet; for instance, in [a1] he proves that the roots of the $ b $-function produce poles of the meromorphic continuation of $ | f | ^ {2 \lambda } $. More precisely, if $ \alpha $ is a root of $ b _ {f} ( s) $, then there exists an integer $ N $ such that $ \alpha - N - \nu $ is a pole of $ | f | ^ {2 \lambda } $ for every non-negative integer $ \nu $. Finally, the $ b $-function is related to the vanishing cycle functor of P. Deligne. For this see, e.g., [a11].

Regular holonomic $ D $-modules.

The notion of regular singularities is classical in the one-dimensional case (cf. Regular singular point). Recall that a differential operator $ P = a _ {0} \partial ^ {m} + \dots + a _ {m} $, $ a _ {0} \neq 0 $, defined in a neighbourhood of 0 in $ \mathbf C $ is said to have a regular singularity at $ 0 $ if the multi-valued solutions of the differential equation $ P u = 0 $ have a moderate growth. By a classical theorem of Fuchs this is equivalent to $ \mathop{\rm ord} ( a _ {i} / a _ {0} ) \geq - i $ for all $ i $. An equivalent formulation due to Malgrange is that $ \chi ( P , {\mathcal O} ) = \chi ( P , \widehat{ {\mathcal O} } ) $, where $ \widehat{ {\mathcal O} } $ is the formal completion of $ {\mathcal O} = \mathbf C \{ z \} $. The index $ \chi $ is defined as $ \chi ( A , {\mathcal F} ) = \sum (- 1) ^ {i} \mathop{\rm dim} _ {\mathbf C } \mathop{\rm Ext} _ {D} ^ {i} ( A , {\mathcal F} ) $. See, for instance, [a4], Chapts. 3, 4. The notion of regularity has been generalized to higher dimensions by Deligne. Generalizations to $ D $-modules are due to Kashiwara, Mebkhout, Oshima, and J.-P. Ramis. There are various equivalent definitions of regularity in the literature, of which the following is given here: A holonomic $ \mathcal D _ {X} $-module $ M $ is said to have regular singularities if $ \chi ( M _ {x} , {\mathcal O} _ {X,x } ) = \chi ( M _ {x} , \widehat{ {\mathcal O} } _ {X ,x } ) $ for all $ x \in X $.

Note that in the algebraic category one requires that the points "at infinity" are regular. (Cf. [a4], Chapt. 7 for a definition due to Bernstein.) Let $ X $ be a smooth algebraic variety and let $ j : X \rightarrow \overline{X}\; $ be a smooth completion. Let $ M $ be a holonomic $ \mathcal D _ {X} $-module. Then $ M $ is regular if and only if $ j _ {*} M $ is regular. Via GAGA this amounts to the regularity of $ ( j _ {*} M ) ^ {\textrm{an} } $ on $ ( \overline{X} ) ^ {\textrm{an } } $, the underlying complex analytic manifold. In the algebraic case regularity is preserved under direct or inverse images. In the analytic case the direct image functor preserves regular holonomicity under proper mappings (cf. [a9]). See [a6] for a result on the non-proper case. The inverse image functor preserves regularity. For any closed subspace $ Z \subset X $ and any $ M $ a regular holonomic $ \mathcal D _ {X} $-module $ H _ {[ Z] } ^ {j} ( M) $ has regular singularities for all $ j $.

The Riemann–Hilbert correspondence.

It asserts that: The de Rham functor $ \mathop{\rm DR} $ establishes an equivalence of categories between $ \mathsf{ D } _ { \mathop{\rm rh} } ^ {b } (\mathcal D _ {X} ) $ and $ \mathsf{ D } _ {c } ^ {b } ( X) $. Here $ \mathsf{ D } _ { \mathop{\rm rh} } ^ {b } (\mathcal D _ {X} ) $ denotes the derived category of bounded complexes of $ \mathcal D _ {X} $-modules with regular holonomic cohomology. This result is independently due to Kashiwara, Kawai (cf. [a8], [a9]) and Mebkhout [a13]. It is tacitly assumed here that $ X $ is analytic. In the algebraic case $ \mathsf{ D } _ { c } ^ { b } ( X) $ has to replaced by $ \mathsf{ D } _ { c } ^ { b } ( X ^ {\textrm{an} } ) $ (cf. [a4]). This correspondence is one of the highlights in the theory of $ D $-modules. It establishes a bridge between analytic objects (regular holonomic $ D $-modules) and geometric ones (constructible sheaves).

Perverse sheaves.

A constructible sheaf $ F ^ { \bullet } \in \mathsf{ D } _ { c } ^ { b } ( X) $ is called a perverse sheaf if 1) $ H ^ {i} ( F ^ { \bullet } ) = 0 $ for $ i < 0 $ and $ \textrm{ codim supp } ( H ^ {i} ( F ^ { \bullet } ) ) \geq i $; 2) the Verdier dual $ ( F ^ { \bullet } ) ^ {*} $ also satisfies 1). Then the Riemann–Hilbert correspondence induces an equivalence between the category of regular holonomic $ \mathcal D _ {X} $-modules and the category of perverse sheaves on $ X $. An example of a perverse sheaf is the intersection cohomology complex $ I C _ {Y} ^ { \bullet } $, where $ Y \subset X $ is a closed analytic subspace. In case $ Y $ is projective it has been conjectured that the intersection cohomology groups $ I H ^ { \bullet } ( Y) $ carry a pure Hodge structure. Using the framework of $ \mathcal D $-modules this has been confirmed by M. Saito (cf. [a16], [a17]). He also gives an analytic proof of the decomposition theorem of Beilinson, Bernstein, Deligne, and Gabber.

References

[a1] D. Barlet, "Monodromie et pôles du prolongement méromorphe de $\int_X |f|^{2\lambda}$" Bull. Soc. Math. France , 114 (1986) pp. 247–269 MR0878239 Zbl 0652.32010
[a2] J.-E. Björk, "Analytic $D$-modules" , Kluwer (1993) MR1232191
[a3] J.-E. Björk, "Rings of differential operators" , North-Holland (1979) MR0549189 Zbl 0499.13009
[a4] A. Borel, et al., "Algebraic $D$-modules" , Acad. Press (1987) MR882000
[a5] O. Gabber, "The integrability of the characteristic variety" Amer. J. Math. , 103 (1981) pp. 445–468 MR0618321 Zbl 0492.16002
[a6] C. Houzel, P. Schapira, "Images directes de modules différentiels" C.R. Acad. Paris Sér. I Math. , 298 (1984) pp. 461–464 MR0750746 Zbl 0582.14004
[a7] M. Kashiwara, "Systems of microdifferential equations" , Birkhäuser (1983) (Translated from French) MR0725502 Zbl 0521.58057
[a8] M. Kashiwara, "The Riemann–Hilbert problem for holonomic systems" Publ. Res. Inst. Math. Sci. , 20 (1984) pp. 319–365 MR0743382 Zbl 0566.32023
[a9] M. Kashiwara, T. Kawai, "On the holonomic systems of micro-differential equations III" Publ. Res. Inst. Math. Sci. , 17 (1981) pp. 813–979
[a10] D.T. Lê, Z. Mebkhout, "Introduction to linear differential systems" P. Orlik (ed.) , Singularities , Proc. Symp. Pure Math. , 40.2 , Amer. Math. Soc. (1983) pp. 31–63 MR713237 Zbl 0521.14006
[a11] B. Malgrange, "Polynômes de Bernstein–Sato et cohomologie évanescente" Astérisque. Analyse et topologie sur les espaces singuliers (II-III) , 101–102 (1983) pp. 243–267 Zbl 0528.32007
[a12] Z. Mebkhout, "Théorèmes de bidualité locale pour les $D_X$-modules holonomes" Ark. Mat. , 20 (1982) pp. 111–124 MR660129
[a13] Z. Mebkhout, "Une autre équivalence de catégories" Compos. Math. , 51 (1984) pp. 63–88 MR0734785 Zbl 0566.32021
[a14] T. Oda, "Introduction to algebraic analysis on complex manifolds" S. Iitaka (ed.) , Algebraic varieties and analytic varieties , North-Holland (1983) pp. 29–48 MR0715644 Zbl 0512.14008
[a15] F. Pham, "Singularités des systèmes différentiels de Gauss–Manin" , Birkhäuser (1979) MR553954 Zbl 0524.32015
[a16] M. Saito, "Hodge structure via filtered $D$-modules" Astérisque. Systèmes différentiels et singularités , 130 (1985) pp. 342–351
[a17] M. Saito, "Modules de Hodge polarisables" Preprint RIMS , 553 (1986) MR1000123 Zbl 0691.14007
[a18] P. Schapira, "Microdifferential systems in the complex domain" , Springer (1985) MR0774228 Zbl 0554.32022
How to Cite This Entry:
D-module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=D-module&oldid=24425
This article was adapted from an original article by M.G.M. van Doorn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article