|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An [[Incidence system|incidence system]] constructed by means of an [[Algebra|algebra]]. Originally (1842), Ch. von Staudt defined, on the projective line/plane over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101601.png" />, a chain ( "Kette" ) in a synthetic way as a subline/plane over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101602.png" />. Much later, in 1973, W. Benz [[#References|[a1]]] gave a common frame for rather different phenomena (the geometries of Möbius, Laguerre and Lie, and Minkowsky; cf. [[Benz plane|Benz plane]]) using the concept of a geometry over an algebra. A recent survey of the development of this theory is [[#References|[a3]]]. | + | <!-- |
| + | c1101601.png |
| + | $#A+1 = 131 n = 0 |
| + | $#C+1 = 131 : ~/encyclopedia/old_files/data/C110/C.1100160 Chain geometry |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | An [[Incidence system|incidence system]] constructed by means of an [[Algebra|algebra]]. Originally (1842), Ch. von Staudt defined, on the projective line/plane over $ \mathbf C $, |
| + | a chain ( "Kette" ) in a synthetic way as a subline/plane over $ \mathbf R $. |
| + | Much later, in 1973, W. Benz [[#References|[a1]]] gave a common frame for rather different phenomena (the geometries of Möbius, Laguerre and Lie, and Minkowsky; cf. [[Benz plane|Benz plane]]) using the concept of a geometry over an algebra. A recent survey of the development of this theory is [[#References|[a3]]]. |
| | | |
| ==Fundamental concepts.== | | ==Fundamental concepts.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101603.png" /> be a [[Ring|ring]] (associative with one) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101604.png" /> be its group of units. To define the projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101605.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101606.png" />, one introduces an [[Equivalence|equivalence]] relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101607.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101608.png" />, as for the [[Projective straight line|projective straight line]] over a skew-field: | + | Let $ A $ |
| + | be a [[Ring|ring]] (associative with one) and let $ A ^ {*} $ |
| + | be its group of units. To define the projective line $ \mathbf P ( A ) $ |
| + | over $ A $, |
| + | one introduces an [[Equivalence|equivalence]] relation $ \equiv $ |
| + | on $ A \times A $, |
| + | as for the [[Projective straight line|projective straight line]] over a skew-field: |
| + | |
| + | $$ |
| + | ( a,b ) \equiv ( a ^ \prime ,b ^ \prime ) \iff \exists u \in A ^ {*} : a ^ \prime = ua \& b ^ \prime = ub. |
| + | $$ |
| + | |
| + | Let $ [ a,b ] $ |
| + | denote the equivalence class of $ ( a,b ) $. |
| + | Then |
| + | |
| + | $$ |
| + | \mathbf P ( A ) = |
| + | $$ |
| + | |
| + | $$ |
| + | = |
| + | \left \{ {[ a,b ] } : {a,b \in A, \exists x,y \in A: \left ( |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c1101609.png" /></td> </tr></table>
| + | \begin{array}{cc} |
| + | a & b \\ |
| + | x & y \\ |
| + | \end{array} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016010.png" /> denote the equivalence class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016011.png" />. Then
| + | \right ) \in { \mathop{\rm GL} } _ {2} ( A ) } \right \} . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016012.png" /></td> </tr></table>
| + | One says that $ [ a,b ] $ |
| + | is distant to $ [ c,d ] $ |
| + | if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016013.png" /></td> </tr></table>
| + | $$ |
| + | \left ( |
| | | |
− | One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016014.png" /> is distant to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016015.png" /> if
| + | \begin{array}{cc} |
| + | a & b \\ |
| + | c & d \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016016.png" /></td> </tr></table>
| + | \right ) \in { \mathop{\rm GL} } _ {2} ( A ) . |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016017.png" /> be a commutative ring and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016018.png" /> a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016019.png" />-algebra, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016020.png" /> is imbedded in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016021.png" /> via the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016022.png" />. Regard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016023.png" /> as a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016024.png" />, and define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016025.png" />. Then the incidence system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016026.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016027.png" /> as incidence relation, is called a chain geometry. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016028.png" /> are called chains. Any three pairwise distant points belong to exactly one chain. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016029.png" /> is a group of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016030.png" />; it is transitive on the set of triples of pairwise distant points, and hence transitive on the set of chains. Four pairwise distant points belong to a common chain, provided their [[Cross ratio|cross ratio]] belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016031.png" />. | + | Let $ K $ |
| + | be a commutative ring and $ A $ |
| + | a $ K $- |
| + | algebra, where $ K $ |
| + | is imbedded in the centre of $ A $ |
| + | via the mapping $ k \mapsto k \cdot 1 $. |
| + | Regard $ \mathbf P ( K ) $ |
| + | as a subset of $ \mathbf P ( A ) $, |
| + | and define $ \mathfrak C _ {K} ( A ) = \{ {\mathbf P ( K ) ^ \gamma } : {\gamma \in { \mathop{\rm GL} } _ {2} ( A ) } \} $. |
| + | Then the incidence system $ \Sigma ( K,A ) = ( \mathbf P ( A ) , \mathfrak C _ {K} ( A ) ) $, |
| + | with $ \in $ |
| + | as incidence relation, is called a chain geometry. The elements of $ \mathfrak C _ {K} ( A ) $ |
| + | are called chains. Any three pairwise distant points belong to exactly one chain. $ { \mathop{\rm PGL} } _ {2} ( A ) $ |
| + | is a group of automorphisms of $ \Sigma ( K,A ) $; |
| + | it is transitive on the set of triples of pairwise distant points, and hence transitive on the set of chains. Four pairwise distant points belong to a common chain, provided their [[Cross ratio|cross ratio]] belongs to $ K $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016032.png" /> is a field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016033.png" /> is said to be a proper chain geometry. A proper chain geometry is a [[Chain space|chain space]]. | + | If $ K $ |
| + | is a field, $ \Sigma ( K,A ) $ |
| + | is said to be a proper chain geometry. A proper chain geometry is a [[Chain space|chain space]]. |
| | | |
− | Below, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016034.png" /> denotes a [[Field|field]]. | + | Below, $ K $ |
| + | denotes a [[Field|field]]. |
| | | |
| ==Affine case.== | | ==Affine case.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016035.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016036.png" /> is the set of all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016037.png" /> distant to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016038.png" />. Consider the traces of the chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016039.png" />: | + | Let $ D = \{ {[ 1,x ] } : {x \in A } \} $. |
| + | Then $ D $ |
| + | is the set of all points of $ \mathbf P ( A ) $ |
| + | distant to $ [ 0,1 ] $. |
| + | Consider the traces of the chains in $ D $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016040.png" /></td> </tr></table>
| + | $$ |
| + | {\widehat{\mathfrak C} } _ {K} ( A ) = \left \{ {C \cap D } : {C \in \mathfrak C _ {K} ( A ) , \left | {C \cap D } \right | \geq 3 } \right \} . |
| + | $$ |
| | | |
− | There is a natural bijection from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016041.png" /> into the [[Affine space|affine space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016042.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016043.png" /> via the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016044.png" />. Under this mapping, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016045.png" /> becomes the set | + | There is a natural bijection from $ D $ |
| + | into the [[Affine space|affine space]] $ A $ |
| + | over $ K $ |
| + | via the mapping $ [ 1,a ] \mapsto a $. |
| + | Under this mapping, $ {\widehat{\mathfrak C} } _ {K} ( A ) $ |
| + | becomes the set |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016046.png" /></td> </tr></table>
| + | $$ |
| + | {\mathcal K} _ {K} ( A ) = \left \{ {\mathbf K ( a,b,c ) } : {a \in A ^ {*} , b,c \in A, \left | {\mathbf K ( a,b,c ) } \right | \geq 3 } \right \} |
| + | $$ |
| | | |
| of affine chains, defined by | | of affine chains, defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016047.png" /></td> </tr></table>
| + | $$ |
| + | \mathbf K ( a,b,c ) = \left \{ {( a t + b ) ^ {- 1 } + c } : {t \in K, a t + b \in A ^ {*} } \right \} \cup \{ c \} . |
| + | $$ |
| | | |
− | This trace geometry is called the affine chain geometry, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016048.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016049.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016050.png" /> is a bundle of parallel straight lines in the affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016051.png" />. For an algebraic (especially, finite-dimensional) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016052.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016053.png" /> (cf. also [[Algebraic algebra|Algebraic algebra]]), the affine chain geometry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016054.png" /> is an affine chain space (cf. [[Chain space|Chain space]]). | + | This trace geometry is called the affine chain geometry, denoted by $ {\mathcal A} ( K,A ) = ( A, {\mathcal K} _ {K} ( A ) ) $. |
| + | For $ a \in A $, |
| + | the set $ \{ {\mathbf K ( a,0,c ) } : {c \in A } \} $ |
| + | is a bundle of parallel straight lines in the affine space $ A $. |
| + | For an algebraic (especially, finite-dimensional) $ K $- |
| + | algebra $ A $( |
| + | cf. also [[Algebraic algebra|Algebraic algebra]]), the affine chain geometry $ {\mathcal A} ( K,A ) $ |
| + | is an affine chain space (cf. [[Chain space|Chain space]]). |
| | | |
| ==Structure of morphisms.== | | ==Structure of morphisms.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016056.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016057.png" />-algebras. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016058.png" />-Jordan homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016059.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016060.png" />-semi-linear mapping satisfying: i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016061.png" />; and ii) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016062.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png" />. For a "strong" algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016064.png" /> (strongness guarantees a great richness in units for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016065.png" />), any point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016066.png" /> can be written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016067.png" /> for suitable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016068.png" />. Then a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016069.png" />-Jordan homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016070.png" /> induces a well-defined mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016072.png" />, which preserves pairs of distant points and maps chains to chains. Moreover, under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016073.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016076.png" />. Such a mapping is called a fundamental morphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016077.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016078.png" />. | + | Let $ A $, |
| + | $ A ^ \prime $ |
| + | be $ K $- |
| + | algebras. A $ K $- |
| + | Jordan homomorphism $ \alpha : A \rightarrow {A ^ \prime } $ |
| + | is a $ K $- |
| + | semi-linear mapping satisfying: i) $ 1 ^ \alpha = 1 $; |
| + | and ii) for all $ a,b \in A $ |
| + | one has $ ( aba ) ^ \alpha = a ^ \alpha b ^ \alpha a ^ \alpha $. |
| + | For a "strong" algebra $ A $( |
| + | strongness guarantees a great richness in units for $ A $), |
| + | any point of $ \mathbf P ( A ) $ |
| + | can be written as $ [ 1 + ab,a ] $ |
| + | for suitable $ a,b \in A $. |
| + | Then a $ K $- |
| + | Jordan homomorphism $ \alpha : A \rightarrow {A ^ \prime } $ |
| + | induces a well-defined mapping $ \sigma : {\mathbf P ( A ) } \rightarrow {\mathbf P ( A ^ \prime ) } $, |
| + | $ [ 1 + ab,a ] \mapsto [ 1 + a ^ \alpha b ^ \alpha ,a ^ \alpha ] $, |
| + | which preserves pairs of distant points and maps chains to chains. Moreover, under $ \sigma $: |
| + | $ [ 1,0 ] \mapsto [ 1,0 ] $, |
| + | $ [ 0,1 ] \mapsto [ 0,1 ] $, |
| + | $ [ 1,1 ] \mapsto [ 1,1 ] $. |
| + | Such a mapping is called a fundamental morphism from $ \Sigma ( K,A ) $ |
| + | to $ \Sigma ( K,A ^ \prime ) $. |
| | | |
− | Conversely, any fundamental morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016079.png" /> having more than one chain in its image can be obtained in this manner (see [[#References|[a2]]] for a more general context). | + | Conversely, any fundamental morphism $ \Sigma ( K,A ) \rightarrow \Sigma ( K,A ^ \prime ) $ |
| + | having more than one chain in its image can be obtained in this manner (see [[#References|[a2]]] for a more general context). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016080.png" /> be the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016081.png" />-Jordan automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016082.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016083.png" /> be the group of fundamental automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016084.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016086.png" />. | + | Let $ { \mathop{\rm Aut} } _ {K} ( A ) $ |
| + | be the group of $ K $- |
| + | Jordan automorphisms of $ A $, |
| + | and let $ F ( K,A ) $ |
| + | be the group of fundamental automorphisms of $ \Sigma ( K,A ) $. |
| + | Then $ { \mathop{\rm Aut} } _ {K} ( A ) \simeq F ( K,A ) $ |
| + | and $ { \mathop{\rm Aut} } _ {K} \Sigma ( K,A ) \simeq F ( K,A ) \cdot { \mathop{\rm PGL} } _ {2} ( A ) $. |
| | | |
| ==Rational representations.== | | ==Rational representations.== |
− | As in the affine case one tries to find kinds of representations for chain geometries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016087.png" /> on a part of a projective space where the chains become curves, at least when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016088.png" /> is finite dimensional. In this way one has discovered incidence systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016089.png" /> isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016090.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016091.png" /> is a projective variety (cf. also [[Projective scheme|Projective scheme]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016092.png" /> is a (Zariski-) closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016094.png" /> consists of rational curves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016095.png" /> (cf. also [[Incidence system|Incidence system]]; [[Rational curve|Rational curve]]). | + | As in the affine case one tries to find kinds of representations for chain geometries $ \Sigma ( K,A ) $ |
| + | on a part of a projective space where the chains become curves, at least when $ A $ |
| + | is finite dimensional. In this way one has discovered incidence systems $ ( V \setminus W, \mathfrak C ) $ |
| + | isomorphic to $ \Sigma ( K,A ) $, |
| + | where $ V $ |
| + | is a projective variety (cf. also [[Projective scheme|Projective scheme]]), $ W $ |
| + | is a (Zariski-) closed subset of $ V $ |
| + | and $ \mathfrak C $ |
| + | consists of rational curves on $ V \setminus W $( |
| + | cf. also [[Incidence system|Incidence system]]; [[Rational curve|Rational curve]]). |
| | | |
− | For a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016096.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016097.png" />-dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016098.png" />, a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016099.png" /> on a part of the [[Grassmann manifold|Grassmann manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160100.png" /> is obtained as follows. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160101.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160102.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160103.png" />-dimensional subspace of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160104.png" />-vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160105.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160106.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160107.png" /> is mapped to a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160108.png" /> (see [[Exterior algebra|Exterior algebra]]). By this procedure, chains are mapped to normal rational curves of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160109.png" />, i.e., to images of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160110.png" /> under the [[Veronese mapping|Veronese mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160111.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160112.png" /> is the intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160113.png" /> with a linear subspace. Other examples can be obtained from this by suitable projection. | + | For a $ K $- |
| + | algebra of $ K $- |
| + | dimension $ n $, |
| + | a representation of $ \Sigma ( K,A ) $ |
| + | on a part of the [[Grassmann manifold|Grassmann manifold]] $ G _ {2n,n } ( K ) $ |
| + | is obtained as follows. For $ [ a,b ] \in \mathbf P ( A ) $, |
| + | the set $ A ( a,b ) = \{ {( xa,xb ) } : {x \in A } \} $ |
| + | is an $ n $- |
| + | dimensional subspace of the $ K $- |
| + | vector space $ A \times A $ |
| + | of dimension $ 2n $. |
| + | Then $ A ( a,b ) $ |
| + | is mapped to a point of $ G _ {2n,n } ( K ) $( |
| + | see [[Exterior algebra|Exterior algebra]]). By this procedure, chains are mapped to normal rational curves of order $ n $, |
| + | i.e., to images of $ \mathbf P ( K ) $ |
| + | under the [[Veronese mapping|Veronese mapping]] $ v _ {n} $, |
| + | and $ V $ |
| + | is the intersection of $ G _ {2n,n } ( K ) $ |
| + | with a linear subspace. Other examples can be obtained from this by suitable projection. |
| | | |
− | A quadratic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160114.png" /> (i.e., any element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160115.png" /> has a quadratic minimal polynomial; cf. also [[Extension of a field|Extension of a field]]) has a representation as a quadric model (cf. [[Chain space|Chain space]]). Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160116.png" /> is the [[Quadric|quadric]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160117.png" /> is its set of singular points; the chains are conics. | + | A quadratic algebra $ A $( |
| + | i.e., any element of $ A \setminus K $ |
| + | has a quadratic minimal polynomial; cf. also [[Extension of a field|Extension of a field]]) has a representation as a quadric model (cf. [[Chain space|Chain space]]). Here, $ V = Q $ |
| + | is the [[Quadric|quadric]] and $ W $ |
| + | is its set of singular points; the chains are conics. |
| | | |
− | ==<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160118.png" />-chain geometries.== | + | == $ n $-chain geometries.== |
− | These are generalizations of chain geometries (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160119.png" />) to higher dimensions. E.g., let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160120.png" /> be a quadratic field extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160121.png" /> (cf. [[Extension of a field|Extension of a field]]). Then, in the projective plane over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160122.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160123.png" />-chains are the subplanes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160124.png" />; these are better known as Baer subplanes, especially in finite geometries (cf. also [[Geometry|Geometry]]). | + | These are generalizations of chain geometries ($n = 1$) to higher dimensions. E.g., let $A$ |
| + | be a quadratic field extension of $K$ (cf. [[Extension of a field]]). Then, in the projective plane over $A$ |
| + | the $2$-chains are the subplanes over $K$; |
| + | these are better known as Baer subplanes, especially in finite geometries (cf. also [[Geometry]]). |
| | | |
− | A Burau geometry is a [[Projective space|projective space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160125.png" /> (again a quadratic extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160126.png" />) together with all projective sublines over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160127.png" />. It can be characterized by the property that the incidence system consisting of a projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160128.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160129.png" /> (as a point set) and all sublines over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160130.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c110160131.png" /> (considered as blocks) for a [[Möbius plane|Möbius plane]]. A more general concept can be found in [[#References|[a4]]]. | + | A Burau geometry is a [[projective space]] over $A$ (again a quadratic extension of $K$) |
| + | together with all projective sublines over $K$. |
| + | It can be characterized by the property that the incidence system consisting of a projective line $L$ |
| + | over $A$ (as a point set) and all sublines over $K$ |
| + | contained in $L$ (considered as blocks) for a [[Möbius plane]]. A more general concept can be found in [[#References|[a4]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Benz, "Vorlesungen über Geometrie der Algebren" , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Blunk, "Chain spaces over Jordan systems" ''Abh. Math. Sem. Hamburg'' , '''64''' (1994) pp. 33–49</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Herzer, "Chain geometries" F. Buekenhout (ed.) , ''Handbook of Incidence Geometry'' , North-Holland (1995)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Pieconkowski, "Projektive Räume über Schiefkörperpaaren" , W und T, Wiss.- und Technik-Verl. (1994)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Benz, "Vorlesungen über Geometrie der Algebren" , Springer (1973)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Blunk, "Chain spaces over Jordan systems" ''Abh. Math. Sem. Hamburg'' , '''64''' (1994) pp. 33–49</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Herzer, "Chain geometries" F. Buekenhout (ed.) , ''Handbook of Incidence Geometry'' , North-Holland (1995)</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Pieconkowski, "Projektive Räume über Schiefkörperpaaren" , W und T, Wiss.- und Technik-Verl. (1994)</TD></TR> |
| + | </table> |
An incidence system constructed by means of an algebra. Originally (1842), Ch. von Staudt defined, on the projective line/plane over $ \mathbf C $,
a chain ( "Kette" ) in a synthetic way as a subline/plane over $ \mathbf R $.
Much later, in 1973, W. Benz [a1] gave a common frame for rather different phenomena (the geometries of Möbius, Laguerre and Lie, and Minkowsky; cf. Benz plane) using the concept of a geometry over an algebra. A recent survey of the development of this theory is [a3].
Fundamental concepts.
Let $ A $
be a ring (associative with one) and let $ A ^ {*} $
be its group of units. To define the projective line $ \mathbf P ( A ) $
over $ A $,
one introduces an equivalence relation $ \equiv $
on $ A \times A $,
as for the projective straight line over a skew-field:
$$
( a,b ) \equiv ( a ^ \prime ,b ^ \prime ) \iff \exists u \in A ^ {*} : a ^ \prime = ua \& b ^ \prime = ub.
$$
Let $ [ a,b ] $
denote the equivalence class of $ ( a,b ) $.
Then
$$
\mathbf P ( A ) =
$$
$$
=
\left \{ {[ a,b ] } : {a,b \in A, \exists x,y \in A: \left (
\begin{array}{cc}
a & b \\
x & y \\
\end{array}
\right ) \in { \mathop{\rm GL} } _ {2} ( A ) } \right \} .
$$
One says that $ [ a,b ] $
is distant to $ [ c,d ] $
if
$$
\left (
\begin{array}{cc}
a & b \\
c & d \\
\end{array}
\right ) \in { \mathop{\rm GL} } _ {2} ( A ) .
$$
Let $ K $
be a commutative ring and $ A $
a $ K $-
algebra, where $ K $
is imbedded in the centre of $ A $
via the mapping $ k \mapsto k \cdot 1 $.
Regard $ \mathbf P ( K ) $
as a subset of $ \mathbf P ( A ) $,
and define $ \mathfrak C _ {K} ( A ) = \{ {\mathbf P ( K ) ^ \gamma } : {\gamma \in { \mathop{\rm GL} } _ {2} ( A ) } \} $.
Then the incidence system $ \Sigma ( K,A ) = ( \mathbf P ( A ) , \mathfrak C _ {K} ( A ) ) $,
with $ \in $
as incidence relation, is called a chain geometry. The elements of $ \mathfrak C _ {K} ( A ) $
are called chains. Any three pairwise distant points belong to exactly one chain. $ { \mathop{\rm PGL} } _ {2} ( A ) $
is a group of automorphisms of $ \Sigma ( K,A ) $;
it is transitive on the set of triples of pairwise distant points, and hence transitive on the set of chains. Four pairwise distant points belong to a common chain, provided their cross ratio belongs to $ K $.
If $ K $
is a field, $ \Sigma ( K,A ) $
is said to be a proper chain geometry. A proper chain geometry is a chain space.
Below, $ K $
denotes a field.
Affine case.
Let $ D = \{ {[ 1,x ] } : {x \in A } \} $.
Then $ D $
is the set of all points of $ \mathbf P ( A ) $
distant to $ [ 0,1 ] $.
Consider the traces of the chains in $ D $:
$$
{\widehat{\mathfrak C} } _ {K} ( A ) = \left \{ {C \cap D } : {C \in \mathfrak C _ {K} ( A ) , \left | {C \cap D } \right | \geq 3 } \right \} .
$$
There is a natural bijection from $ D $
into the affine space $ A $
over $ K $
via the mapping $ [ 1,a ] \mapsto a $.
Under this mapping, $ {\widehat{\mathfrak C} } _ {K} ( A ) $
becomes the set
$$
{\mathcal K} _ {K} ( A ) = \left \{ {\mathbf K ( a,b,c ) } : {a \in A ^ {*} , b,c \in A, \left | {\mathbf K ( a,b,c ) } \right | \geq 3 } \right \}
$$
of affine chains, defined by
$$
\mathbf K ( a,b,c ) = \left \{ {( a t + b ) ^ {- 1 } + c } : {t \in K, a t + b \in A ^ {*} } \right \} \cup \{ c \} .
$$
This trace geometry is called the affine chain geometry, denoted by $ {\mathcal A} ( K,A ) = ( A, {\mathcal K} _ {K} ( A ) ) $.
For $ a \in A $,
the set $ \{ {\mathbf K ( a,0,c ) } : {c \in A } \} $
is a bundle of parallel straight lines in the affine space $ A $.
For an algebraic (especially, finite-dimensional) $ K $-
algebra $ A $(
cf. also Algebraic algebra), the affine chain geometry $ {\mathcal A} ( K,A ) $
is an affine chain space (cf. Chain space).
Structure of morphisms.
Let $ A $,
$ A ^ \prime $
be $ K $-
algebras. A $ K $-
Jordan homomorphism $ \alpha : A \rightarrow {A ^ \prime } $
is a $ K $-
semi-linear mapping satisfying: i) $ 1 ^ \alpha = 1 $;
and ii) for all $ a,b \in A $
one has $ ( aba ) ^ \alpha = a ^ \alpha b ^ \alpha a ^ \alpha $.
For a "strong" algebra $ A $(
strongness guarantees a great richness in units for $ A $),
any point of $ \mathbf P ( A ) $
can be written as $ [ 1 + ab,a ] $
for suitable $ a,b \in A $.
Then a $ K $-
Jordan homomorphism $ \alpha : A \rightarrow {A ^ \prime } $
induces a well-defined mapping $ \sigma : {\mathbf P ( A ) } \rightarrow {\mathbf P ( A ^ \prime ) } $,
$ [ 1 + ab,a ] \mapsto [ 1 + a ^ \alpha b ^ \alpha ,a ^ \alpha ] $,
which preserves pairs of distant points and maps chains to chains. Moreover, under $ \sigma $:
$ [ 1,0 ] \mapsto [ 1,0 ] $,
$ [ 0,1 ] \mapsto [ 0,1 ] $,
$ [ 1,1 ] \mapsto [ 1,1 ] $.
Such a mapping is called a fundamental morphism from $ \Sigma ( K,A ) $
to $ \Sigma ( K,A ^ \prime ) $.
Conversely, any fundamental morphism $ \Sigma ( K,A ) \rightarrow \Sigma ( K,A ^ \prime ) $
having more than one chain in its image can be obtained in this manner (see [a2] for a more general context).
Let $ { \mathop{\rm Aut} } _ {K} ( A ) $
be the group of $ K $-
Jordan automorphisms of $ A $,
and let $ F ( K,A ) $
be the group of fundamental automorphisms of $ \Sigma ( K,A ) $.
Then $ { \mathop{\rm Aut} } _ {K} ( A ) \simeq F ( K,A ) $
and $ { \mathop{\rm Aut} } _ {K} \Sigma ( K,A ) \simeq F ( K,A ) \cdot { \mathop{\rm PGL} } _ {2} ( A ) $.
Rational representations.
As in the affine case one tries to find kinds of representations for chain geometries $ \Sigma ( K,A ) $
on a part of a projective space where the chains become curves, at least when $ A $
is finite dimensional. In this way one has discovered incidence systems $ ( V \setminus W, \mathfrak C ) $
isomorphic to $ \Sigma ( K,A ) $,
where $ V $
is a projective variety (cf. also Projective scheme), $ W $
is a (Zariski-) closed subset of $ V $
and $ \mathfrak C $
consists of rational curves on $ V \setminus W $(
cf. also Incidence system; Rational curve).
For a $ K $-
algebra of $ K $-
dimension $ n $,
a representation of $ \Sigma ( K,A ) $
on a part of the Grassmann manifold $ G _ {2n,n } ( K ) $
is obtained as follows. For $ [ a,b ] \in \mathbf P ( A ) $,
the set $ A ( a,b ) = \{ {( xa,xb ) } : {x \in A } \} $
is an $ n $-
dimensional subspace of the $ K $-
vector space $ A \times A $
of dimension $ 2n $.
Then $ A ( a,b ) $
is mapped to a point of $ G _ {2n,n } ( K ) $(
see Exterior algebra). By this procedure, chains are mapped to normal rational curves of order $ n $,
i.e., to images of $ \mathbf P ( K ) $
under the Veronese mapping $ v _ {n} $,
and $ V $
is the intersection of $ G _ {2n,n } ( K ) $
with a linear subspace. Other examples can be obtained from this by suitable projection.
A quadratic algebra $ A $(
i.e., any element of $ A \setminus K $
has a quadratic minimal polynomial; cf. also Extension of a field) has a representation as a quadric model (cf. Chain space). Here, $ V = Q $
is the quadric and $ W $
is its set of singular points; the chains are conics.
$ n $-chain geometries.
These are generalizations of chain geometries ($n = 1$) to higher dimensions. E.g., let $A$
be a quadratic field extension of $K$ (cf. Extension of a field). Then, in the projective plane over $A$
the $2$-chains are the subplanes over $K$;
these are better known as Baer subplanes, especially in finite geometries (cf. also Geometry).
A Burau geometry is a projective space over $A$ (again a quadratic extension of $K$)
together with all projective sublines over $K$.
It can be characterized by the property that the incidence system consisting of a projective line $L$
over $A$ (as a point set) and all sublines over $K$
contained in $L$ (considered as blocks) for a Möbius plane. A more general concept can be found in [a4].
References
[a1] | W. Benz, "Vorlesungen über Geometrie der Algebren" , Springer (1973) |
[a2] | A. Blunk, "Chain spaces over Jordan systems" Abh. Math. Sem. Hamburg , 64 (1994) pp. 33–49 |
[a3] | A. Herzer, "Chain geometries" F. Buekenhout (ed.) , Handbook of Incidence Geometry , North-Holland (1995) |
[a4] | K. Pieconkowski, "Projektive Räume über Schiefkörperpaaren" , W und T, Wiss.- und Technik-Verl. (1994) |