Difference between revisions of "Trochoid"
(Importing text file) |
(OldImage template added) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | A plane curve that is the trajectory of a point | + | {{TEX|done}} |
+ | A plane curve that is the trajectory of a point $M$ inside or outside a circle that rolls upon another circle. A trochoid is called an epitrochoid (Fig.1a, Fig.1b) or a hypotrochoid (Fig.2a, Fig.2b), depending on whether the rolling circle has external or internal contact with the fixed circle. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t094330a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t094330a.gif" /> | ||
Line 19: | Line 20: | ||
The parametric equations of the epitrochoid are: | The parametric equations of the epitrochoid are: | ||
− | + | $$x=(R+mR)\cos mt-h\cos(t+mt),$$ | |
− | + | $$y=(R+mR)\sin mt-h\sin(t+mt);$$ | |
and of the hypotrochoid: | and of the hypotrochoid: | ||
− | + | $$x=(R-mR)\cos mt+h\cos(t-mt),$$ | |
− | + | $$y=(R-mR)\sin mt-h\sin(t-mt),$$ | |
− | where | + | where $r$ is the radius of the rolling circle, $R$ is the radius of the fixed circle, $m=R/r$ is the modulus of the trochoid, and $h$ is the distance from the tracing point to the centre of the rolling circle. If $h>r$, then the trochoid is called elongated (Fig.1a, Fig.2a), when $h>r$ shortened (Fig.1b, Fig.2b) and when $h=r$, an [[Epicycloid|epicycloid]] or [[Hypocycloid|hypocycloid]]. |
− | If | + | If $h=R=r$, then the trochoid is called a trochoidal rosette; its equation in polar coordinates is |
− | + | $$\rho=a\sin\mu\phi.$$ | |
− | For rational values of | + | For rational values of $\mu$ the trochoidal rosette is an [[Algebraic curve|algebraic curve]]. If $R=r$, then the trochoid is called the [[Pascal limaçon|Pascal limaçon]]; if $R=2r$, an [[Ellipse|ellipse]]. |
Trochoids are related to the so-called cycloidal curves (cf. [[Cycloidal curve|Cycloidal curve]]). Sometimes the trochoid is called a shortened or elongated cycloid. | Trochoids are related to the so-called cycloidal curves (cf. [[Cycloidal curve|Cycloidal curve]]). Sometimes the trochoid is called a shortened or elongated cycloid. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 48: | Line 44: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.-R. Müller, "Kinematik" , de Gruyter (1963)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.D. Lawrence, "A catalog of special plane curves" , Dover | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> H.-R. Müller, "Kinematik" , de Gruyter (1963)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> J.D. Lawrence, "A catalog of special plane curves" , Dover (1972) {{ISBN|0-486-60288-5}} {{ZBL|0257.50002}}</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) pp. §9.14.34 (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> F. Gomes Teixeira, "Traité des courbes" , '''1–3''' , Chelsea, reprint (1971)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{OldImage}} |
Latest revision as of 13:11, 18 May 2024
A plane curve that is the trajectory of a point $M$ inside or outside a circle that rolls upon another circle. A trochoid is called an epitrochoid (Fig.1a, Fig.1b) or a hypotrochoid (Fig.2a, Fig.2b), depending on whether the rolling circle has external or internal contact with the fixed circle.
Figure: t094330a
Figure: t094330b
Figure: t094330c
Figure: t094330d
The parametric equations of the epitrochoid are:
$$x=(R+mR)\cos mt-h\cos(t+mt),$$
$$y=(R+mR)\sin mt-h\sin(t+mt);$$
and of the hypotrochoid:
$$x=(R-mR)\cos mt+h\cos(t-mt),$$
$$y=(R-mR)\sin mt-h\sin(t-mt),$$
where $r$ is the radius of the rolling circle, $R$ is the radius of the fixed circle, $m=R/r$ is the modulus of the trochoid, and $h$ is the distance from the tracing point to the centre of the rolling circle. If $h>r$, then the trochoid is called elongated (Fig.1a, Fig.2a), when $h>r$ shortened (Fig.1b, Fig.2b) and when $h=r$, an epicycloid or hypocycloid.
If $h=R=r$, then the trochoid is called a trochoidal rosette; its equation in polar coordinates is
$$\rho=a\sin\mu\phi.$$
For rational values of $\mu$ the trochoidal rosette is an algebraic curve. If $R=r$, then the trochoid is called the Pascal limaçon; if $R=2r$, an ellipse.
Trochoids are related to the so-called cycloidal curves (cf. Cycloidal curve). Sometimes the trochoid is called a shortened or elongated cycloid.
Comments
Trochoids play an important role in kinematics. They are used for the construction of gears and engines (see [a2]). Historically, they were a tool for the description of the movement of the planets before N. Copernicus and J. Kepler succeeded to establish the actual view of the dynamics of the solar system.
References
[1] | A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian) |
[a1] | K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962) |
[a2] | H.-R. Müller, "Kinematik" , de Gruyter (1963) |
[a3] | J.D. Lawrence, "A catalog of special plane curves" , Dover (1972) ISBN 0-486-60288-5 Zbl 0257.50002 |
[a4] | M. Berger, "Geometry" , 1–2 , Springer (1987) pp. §9.14.34 (Translated from French) |
[a5] | F. Gomes Teixeira, "Traité des courbes" , 1–3 , Chelsea, reprint (1971) |
Trochoid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trochoid&oldid=18583