|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A [[Fibre space|fibre space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963801.png" /> each fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963802.png" /> of which is endowed with the structure of a (finite-dimensional) [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963803.png" /> over a skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963804.png" /> such that the following local triviality condition is satisfied. Each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963805.png" /> has an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963806.png" /> and an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963807.png" />-isomorphism of fibre bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963808.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v0963809.png" /> is an isomorphism of vector spaces for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638011.png" /> is said to be the dimension of the vector bundle. The sections of a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638012.png" /> form a locally free module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638013.png" /> over the ring of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638014.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638015.png" />. A morphism of vector bundles is a morphism of fibre bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638016.png" /> for which the restriction to each fibre is linear. The set of vector bundles and their morphisms forms the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638017.png" />. The concept of a vector bundle arose as an extension of the [[Tangent bundle|tangent bundle]] and the [[Normal bundle|normal bundle]] in differential geometry; by now it has become a basic tool for studies in various branches of mathematics: differential and algebraic topology, the theory of linear connections, algebraic geometry, the theory of (pseudo-) differential operators, etc.
| + | <!-- |
| + | v0963801.png |
| + | $#A+1 = 143 n = 1 |
| + | $#C+1 = 143 : ~/encyclopedia/old_files/data/V096/V.0906380 Vector bundle |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638019.png" /> is a vector bundle and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638020.png" /> is a vector subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638021.png" /> is said to be a subbundle of the vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638022.png" />. For instance, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638023.png" /> be a vector space and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638024.png" /> be the [[Grassmann manifold|Grassmann manifold]] of subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638025.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638026.png" />; the subspace of the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638027.png" />, consisting of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638028.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638029.png" />, will then be a subbundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638030.png" /> of the trivial vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638031.png" />. The union of all vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638033.png" /> is a subbundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638034.png" /> endowed with the quotient topology, is said to be a quotient bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638035.png" />. Let, furthermore, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638036.png" /> be a vector space and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638037.png" /> be the Grassmann manifold of subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638038.png" /> of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638039.png" />; the quotient bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638040.png" /> of the trivial vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638041.png" /> is defined as the quotient space of the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638042.png" /> by the subbundle consisting of all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638044.png" />. The concepts of a subbundle and a quotient bundle are used in contraction and glueing operations used to construct vector bundles over quotient spaces.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638045.png" />-morphism of vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638046.png" /> is said to be of constant rank (pure) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638047.png" /> is locally constant on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638048.png" />. Injective and surjective morphisms are exact and are said to be monomorphisms and epimorphisms of the vector bundle, respectively. The following vector bundles are uniquely defined for a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638049.png" /> of locally constant rank: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638050.png" /> (the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638051.png" />), which is a subbundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638052.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638053.png" /> (the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638054.png" />), which is a subbundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638055.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638056.png" /> (the cokernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638057.png" />), which is a quotient bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638058.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638059.png" /> (the co-image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638060.png" />), which is a quotient bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638061.png" />. Any subbundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638062.png" /> is the image of some monomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638063.png" />, while any quotient bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638064.png" /> is the cokernel of some epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638065.png" />. A sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638066.png" />-morphisms of vector bundles | + | A [[Fibre space|fibre space]] $ \pi : X \rightarrow B $ |
| + | each fibre $ \pi ^ {-1} ( b) $ |
| + | of which is endowed with the structure of a (finite-dimensional) [[Vector space|vector space]] $ V $ |
| + | over a skew-field $ {\mathcal P} $ |
| + | such that the following local triviality condition is satisfied. Each point $ b \in B $ |
| + | has an open neighbourhood $ U $ |
| + | and an $ U $-isomorphism of fibre bundles $ \phi : \pi ^ {-1} ( U) \rightarrow U \times V $ |
| + | such that $ \phi \mid _ {\pi ^ {- 1} ( b) } : \pi ^ {-1} ( b) \rightarrow b \times V $ |
| + | is an isomorphism of vector spaces for each $ b \in B $; |
| + | $ \mathop{\rm dim} V $ |
| + | is said to be the dimension of the vector bundle. The sections of a vector bundle $ \pi $ |
| + | form a locally free module $ \Gamma ( \pi ) $ |
| + | over the ring of continuous functions on $ B $ |
| + | with values in $ {\mathcal P} $. |
| + | A morphism of vector bundles is a morphism of fibre bundles $ f: \pi \rightarrow \pi ^ \prime $ |
| + | for which the restriction to each fibre is linear. The set of vector bundles and their morphisms forms the category $ \mathbf{Bund} $. |
| + | The concept of a vector bundle arose as an extension of the [[Tangent bundle|tangent bundle]] and the [[Normal bundle|normal bundle]] in differential geometry; by now it has become a basic tool for studies in various branches of mathematics: differential and algebraic topology, the theory of linear connections, algebraic geometry, the theory of (pseudo-) differential operators, etc. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638067.png" /></td> </tr></table>
| + | A subset $ X ^ \prime \subset X $ |
| + | such that $ \pi \mid _ {X} ^ \prime : X ^ \prime \rightarrow B $ |
| + | is a vector bundle and $ X ^ \prime \cap \pi ^ {-1} ( b) $ |
| + | is a vector subspace in $ \pi ^ {-1} ( b) $ |
| + | is said to be a subbundle of the vector bundle $ \pi $. |
| + | For instance, let $ V $ |
| + | be a vector space and let $ G _ {k} ( V) $ |
| + | be the [[Grassmann manifold|Grassmann manifold]] of subspaces of $ V $ |
| + | of dimension $ k $; |
| + | the subspace of the product $ G _ {k} ( V) \times V $, |
| + | consisting of pairs $ ( p, v) $ |
| + | such that $ v \in p $, |
| + | will then be a subbundle $ \gamma _ {k} $ |
| + | of the trivial vector bundle $ G _ {k} ( V) \times V $. |
| + | The union of all vector spaces $ \pi ^ {-1} ( b) / \pi _ {2} ^ {-1} ( b) $, |
| + | where $ \pi _ {2} $ |
| + | is a subbundle of $ \pi $ |
| + | endowed with the quotient topology, is said to be a quotient bundle of $ \pi $. |
| + | Let, furthermore, $ V $ |
| + | be a vector space and let $ G ^ {k} ( V) $ |
| + | be the Grassmann manifold of subspaces of $ V $ |
| + | of codimension $ k $; |
| + | the quotient bundle $ \gamma ^ {k} $ |
| + | of the trivial vector bundle $ G ^ {k} ( V) \times V $ |
| + | is defined as the quotient space of the product $ G ^ {k} ( V) \times V $ |
| + | by the subbundle consisting of all pairs $ ( p, v) $, |
| + | $ v \in p $. |
| + | The concepts of a subbundle and a quotient bundle are used in contraction and glueing operations used to construct vector bundles over quotient spaces. |
| | | |
− | is said to be exact if the sequence | + | A $ B $- |
| + | morphism of vector bundles $ f : \pi \rightarrow \pi ^ \prime $ |
| + | is said to be of constant rank (pure) if $ \mathop{\rm dim} \mathop{\rm ker} f \ \mid _ {\pi ^ {- 1} ( b) } $ |
| + | is locally constant on $ B $. |
| + | Injective and surjective morphisms are exact and are said to be monomorphisms and epimorphisms of the vector bundle, respectively. The following vector bundles are uniquely defined for a morphism $ f $ |
| + | of locally constant rank: $ \mathop{\rm Ker} f $ (the kernel of $ f $), |
| + | which is a subbundle of $ \pi $; |
| + | $ \mathop{\rm Im} f $ (the image of $ f $), |
| + | which is a subbundle of $ \pi ^ \prime $; |
| + | $ \mathop{\rm Coker} f $ (the cokernel of $ f $), |
| + | which is a quotient bundle of $ \pi $; |
| + | and $ \mathop{\rm Coim} f $ (the co-image of $ f $), |
| + | which is a quotient bundle of $ \pi ^ \prime $. |
| + | Any subbundle $ \pi _ {1} $ |
| + | is the image of some monomorphism $ i: \pi _ {1} \rightarrow \pi $, |
| + | while any quotient bundle $ \pi _ {2} $ |
| + | is the cokernel of some epimorphism $ j : \pi \rightarrow \pi _ {2} $. |
| + | A sequence of $ B $- |
| + | morphisms of vector bundles |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638068.png" /></td> </tr></table>
| + | $$ |
| + | {} \cdots \rightarrow \pi ^ \prime \rightarrow \pi \rightarrow \pi ^ {\prime\prime} \rightarrow \cdots |
| + | $$ |
| | | |
− | is exact for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638069.png" />. In particular, the sequence | + | is said to be exact if the sequence |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638070.png" /></td> </tr></table>
| |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638071.png" /> is the zero vector bundle, is exact if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638072.png" /> is a monomorphism, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638073.png" /> is an epimorphism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638074.png" />. The set of vector bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638076.png" />-morphisms of locally constant rank forms an exact subcategory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638077.png" /> of the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638078.png" />.
| + | $$ |
| + | {} \cdots \rightarrow ( \pi ^ \prime ) ^ {-1} ( b) \rightarrow \pi ^ {-1} ( b) |
| + | \rightarrow ( \pi ^ {\prime\prime} ) ^ {-1} ( b) \rightarrow \cdots |
| + | $$ |
| | | |
− | For any vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638079.png" /> and mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638080.png" />, the [[Induced fibre bundle|induced fibre bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638081.png" /> is endowed with a vector bundle structure such that the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638082.png" /> is a vector bundle morphism. This structure is unique and has the following property: Every fibre mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638083.png" /> is an isomorphism of vector spaces. For instance, a vector bundle of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638084.png" /> over a paracompact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638085.png" /> is isomorphic to one of the vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638087.png" /> induced by certain mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638088.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png" />, respectively; moreover, homotopic mappings induce isomorphic vector bundles and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638090.png" />, the converse is true: To isomorphic vector bundles there correspond homotopic mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638091.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638092.png" />. This is one of the fundamental theorems in the homotopic classification of vector bundles, expressing the universal character of the vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638094.png" /> with respect to the classifying mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638095.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638096.png" />.
| + | is exact for all $ b \in B $. |
| + | In particular, the sequence |
| | | |
− | Any continuous operation ([[Functor|functor]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638097.png" /> on the category of vector spaces uniquely determines a continuous functor on the category of vector bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638098.png" />; in this way it is possible to construct bundles associated with a given vector bundle: tensor bundles, vector bundles of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638099.png" /> and, in particular, the dual vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380100.png" />, exterior powers of vector bundles, etc., whose sections are vector bundles with supplementary structures. These are extensively employed in practical applications.
| + | $$ |
| + | 0 \rightarrow \pi _ {1} \rightarrow ^ { i } \pi \rightarrow ^ { j } \pi _ {2} \rightarrow 0 , |
| + | $$ |
| | | |
− | A direct sum (Whitney sum) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380101.png" /> and tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380102.png" /> have been defined for two vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380104.png" />. With respect to these operations the set of classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380105.png" /> of isomorphic vector bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380106.png" /> forms a semi-ring which plays an important part in the construction of a [[K-functor|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380107.png" />-functor]]; thus, if for vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380109.png" /> there exist trivial vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380110.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380111.png" /> such that the vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380112.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380113.png" /> are isomorphic (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380114.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380115.png" /> are stably equivalent), then their images in the "completion" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380116.png" /> of the semi-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380117.png" /> are identical; moreover, the fact that the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380118.png" /> and the set of classes of stably-equivalent vector bundles coincide follows from the existence of an inverse vector bundle for any vector bundle over a paracompact space.
| + | where $ 0 $ |
| + | is the zero vector bundle, is exact if $ i $ |
| + | is a monomorphism, $ j $ |
| + | is an epimorphism and $ \mathop{\rm Im} i = { \mathop{\rm Ker} } j $. |
| + | The set of vector bundles over $ B $ |
| + | and $ B $- |
| + | morphisms of locally constant rank forms an exact subcategory $ \mathbf{Bund} _ {B} $ |
| + | of the category $ \mathbf{Bund} $. |
| | | |
− | For any vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380119.png" /> over a paracompact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380120.png" /> there exists a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380121.png" /> of the vector bundle | + | For any vector bundle $ \pi : X \rightarrow B $ |
| + | and mapping $ u: B _ {1} \rightarrow B $, |
| + | the [[Induced fibre bundle|induced fibre bundle]] $ u ^ {*} ( \pi ) $ |
| + | is endowed with a vector bundle structure such that the morphism $ U: u ^ {*} ( \pi ) \rightarrow \pi $ |
| + | is a vector bundle morphism. This structure is unique and has the following property: Every fibre mapping $ {( u ^ {*} ( \pi )) } ^ {-1} ( b) \rightarrow \pi ^ {-1} ( u( b)) $ |
| + | is an isomorphism of vector spaces. For instance, a vector bundle of dimension $ k $ |
| + | over a paracompact space $ B $ |
| + | is isomorphic to one of the vector bundles $ u ^ {*} ( \gamma _ {k} ) $ |
| + | and $ \widetilde{u} {} ^ {*} ( \gamma ^ {k} ) $ |
| + | induced by certain mappings $ u: B \rightarrow G _ {k} ( V) $ |
| + | and $ \widetilde{u} : B \rightarrow G ^ {k} ( V) $, |
| + | respectively; moreover, homotopic mappings induce isomorphic vector bundles and, if $ \mathop{\rm dim} V \neq \infty $, |
| + | the converse is true: To isomorphic vector bundles there correspond homotopic mappings $ u $ |
| + | and $ \widetilde{u} $. |
| + | This is one of the fundamental theorems in the homotopic classification of vector bundles, expressing the universal character of the vector bundles $ \gamma _ {k} $ |
| + | and $ \gamma ^ {k} $ |
| + | with respect to the classifying mappings $ u $ |
| + | and $ \widetilde{u} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380122.png" /></td> </tr></table>
| + | Any continuous operation ([[Functor|functor]]) $ T $ |
| + | on the category of vector spaces uniquely determines a continuous functor on the category of vector bundles over $ B $; |
| + | in this way it is possible to construct bundles associated with a given vector bundle: tensor bundles, vector bundles of morphisms $ { \mathop{\rm Hom} } _ {B} ( \pi , \pi ^ \prime ) $ |
| + | and, in particular, the dual vector bundle $ \pi ^ {*} $, |
| + | exterior powers of vector bundles, etc., whose sections are vector bundles with supplementary structures. These are extensively employed in practical applications. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380123.png" /> is a trivial one-dimensional vector bundle, which on each fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380124.png" /> is a positive-definite form, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380125.png" /> is metrizable; this makes it possible to establish, in particular, the splittability of an arbitrary exact sequence of vector bundles
| + | A direct sum (Whitney sum) $ \pi \oplus \pi ^ \prime $ |
| + | and tensor product $ \pi \otimes \pi ^ \prime $ |
| + | have been defined for two vector bundles $ \pi $ |
| + | and $ \pi ^ \prime $. |
| + | With respect to these operations the set of classes $ { \mathop{\rm Vekt} } _ {B} $ |
| + | of isomorphic vector bundles over $ B $ |
| + | forms a semi-ring which plays an important part in the construction of a [[K-functor| $ K $-functor]]; thus, if for vector bundles $ \pi $ |
| + | and $ \pi ^ \prime $ |
| + | there exist trivial vector bundles $ \theta $ |
| + | and $ \theta ^ \prime $ |
| + | such that the vector bundles $ \pi \oplus \theta $ |
| + | and $ \pi ^ \prime \oplus \theta ^ \prime $ |
| + | are isomorphic (i.e. $ \pi $ |
| + | and $ \pi ^ \prime $ |
| + | are stably equivalent), then their images in the "completion" $ K ( B) $ |
| + | of the semi-ring $ { \mathop{\rm Vekt} } _ {B} $ |
| + | are identical; moreover, the fact that the ring $ K( B) $ |
| + | and the set of classes of stably-equivalent vector bundles coincide follows from the existence of an inverse vector bundle for any vector bundle over a paracompact space. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380126.png" /></td> </tr></table>
| + | For any vector bundle $ \pi : X \rightarrow B $ |
| + | over a paracompact space $ B $ |
| + | there exists a section $ \beta $ |
| + | of the vector bundle |
| | | |
− | in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380127.png" /> is metrizable, that is, the existence of a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380128.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380129.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380130.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380131.png" /> is the imbedding into the first term and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380132.png" /> is the projection onto the second term.
| + | $$ |
| + | \pi ^ {*} \oplus \pi ^ {*} = \mathop{\rm Hom} ( \pi \oplus \pi , P ), |
| + | $$ |
| | | |
− | If, in each fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380133.png" /> of the vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380134.png" />, one identifies the points lying on the same line passing through zero, one obtains a bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380135.png" />, which is associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380136.png" /> and is said to be its projectivization; a fibre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380137.png" /> is the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380138.png" /> which is associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380139.png" />. This bundle is used to study Thom spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380140.png" /> (cf. [[Thom space|Thom space]]), used in the homotopic interpretation of classes of bordant manifolds, characteristic classes of vector bundles describing the homological properties of manifolds, etc.
| + | where $ P $ |
| + | is a trivial one-dimensional vector bundle, which on each fibre $ \pi ^ {-1} ( b) $ |
| + | is a positive-definite form, i.e. $ \pi $ |
| + | is metrizable; this makes it possible to establish, in particular, the splittability of an arbitrary exact sequence of vector bundles |
| | | |
− | The concept of a vector bundle can be generalized to the case when the fibre is an infinite-dimensional vector space; in doing so, one must distinguish between the different topologies of the space of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380141.png" />, suitably modify the definitions of a pure morphism and an exact sequence of morphisms, and also the construction of vector bundles associated with continuous functors on the category of infinite-dimensional vector spaces.
| + | $$ |
| + | 0 \rightarrow \xi \rightarrow ^ { u } \pi \rightarrow ^ { v } \zeta \rightarrow 0 |
| + | $$ |
| | | |
− | ====References====
| + | in which $ \pi $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380142.png" />-theory: lectures" , Benjamin (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German)</TD></TR></table>
| + | is metrizable, that is, the existence of a morphism $ w : \xi \oplus \zeta \rightarrow \pi $ |
| + | such that $ wi = u $, |
| + | $ vw = j $, |
| + | where $ i $ |
| + | is the imbedding into the first term and $ j $ |
| + | is the projection onto the second term. |
| | | |
| + | If, in each fibre $ \pi ^ {-1} ( b) $ |
| + | of the vector bundle $ \pi : X \rightarrow B $, |
| + | one identifies the points lying on the same line passing through zero, one obtains a bundle $ \pi _ {0} : \Pi _ {( \pi ) } \rightarrow B $, |
| + | which is associated with $ \pi $ |
| + | and is said to be its projectivization; a fibre of $ \pi _ {0} $ |
| + | is the projective space $ \Pi ( V) $ |
| + | which is associated with $ V $. |
| + | This bundle is used to study Thom spaces $ T ( \pi ) = \Pi ( \pi \oplus P)/ \Pi ( \pi ) $ (cf. [[Thom space|Thom space]]), used in the homotopic interpretation of classes of bordant manifolds, characteristic classes of vector bundles describing the homological properties of manifolds, etc. |
| | | |
| + | The concept of a vector bundle can be generalized to the case when the fibre is an infinite-dimensional vector space; in doing so, one must distinguish between the different topologies of the space of morphisms $ { \mathop{\rm Hom} } ( \pi , \pi ^ \prime ) $, |
| + | suitably modify the definitions of a pure morphism and an exact sequence of morphisms, and also the construction of vector bundles associated with continuous functors on the category of infinite-dimensional vector spaces. |
| | | |
| ====Comments==== | | ====Comments==== |
− | For more on the universality and classifying properties of the bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380143.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v096380144.png" /> cf. [[Classifying space|Classifying space]] or [[#References|[a1]]]. | + | For more on the universality and classifying properties of the bundles $ \gamma ^ {k} $ |
| + | and $ \gamma _ {k} $ |
| + | cf. [[Classifying space|Classifying space]] or [[#References|[a1]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969) {{MR|0242081}} {{ZBL|0653.53001}} {{ZBL|0284.53018}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.F. Atiyah, "$K$-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III {{MR|1931083}} {{MR|1532744}} {{MR|0155257}} {{ZBL|1008.57001}} {{ZBL|0103.15101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) {{MR|1335917}} {{MR|0202713}} {{ZBL|0376.14001}} </TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) {{MR|0440554}} {{ZBL|0298.57008}} </TD></TR> |
| + | </table> |
A fibre space $ \pi : X \rightarrow B $
each fibre $ \pi ^ {-1} ( b) $
of which is endowed with the structure of a (finite-dimensional) vector space $ V $
over a skew-field $ {\mathcal P} $
such that the following local triviality condition is satisfied. Each point $ b \in B $
has an open neighbourhood $ U $
and an $ U $-isomorphism of fibre bundles $ \phi : \pi ^ {-1} ( U) \rightarrow U \times V $
such that $ \phi \mid _ {\pi ^ {- 1} ( b) } : \pi ^ {-1} ( b) \rightarrow b \times V $
is an isomorphism of vector spaces for each $ b \in B $;
$ \mathop{\rm dim} V $
is said to be the dimension of the vector bundle. The sections of a vector bundle $ \pi $
form a locally free module $ \Gamma ( \pi ) $
over the ring of continuous functions on $ B $
with values in $ {\mathcal P} $.
A morphism of vector bundles is a morphism of fibre bundles $ f: \pi \rightarrow \pi ^ \prime $
for which the restriction to each fibre is linear. The set of vector bundles and their morphisms forms the category $ \mathbf{Bund} $.
The concept of a vector bundle arose as an extension of the tangent bundle and the normal bundle in differential geometry; by now it has become a basic tool for studies in various branches of mathematics: differential and algebraic topology, the theory of linear connections, algebraic geometry, the theory of (pseudo-) differential operators, etc.
A subset $ X ^ \prime \subset X $
such that $ \pi \mid _ {X} ^ \prime : X ^ \prime \rightarrow B $
is a vector bundle and $ X ^ \prime \cap \pi ^ {-1} ( b) $
is a vector subspace in $ \pi ^ {-1} ( b) $
is said to be a subbundle of the vector bundle $ \pi $.
For instance, let $ V $
be a vector space and let $ G _ {k} ( V) $
be the Grassmann manifold of subspaces of $ V $
of dimension $ k $;
the subspace of the product $ G _ {k} ( V) \times V $,
consisting of pairs $ ( p, v) $
such that $ v \in p $,
will then be a subbundle $ \gamma _ {k} $
of the trivial vector bundle $ G _ {k} ( V) \times V $.
The union of all vector spaces $ \pi ^ {-1} ( b) / \pi _ {2} ^ {-1} ( b) $,
where $ \pi _ {2} $
is a subbundle of $ \pi $
endowed with the quotient topology, is said to be a quotient bundle of $ \pi $.
Let, furthermore, $ V $
be a vector space and let $ G ^ {k} ( V) $
be the Grassmann manifold of subspaces of $ V $
of codimension $ k $;
the quotient bundle $ \gamma ^ {k} $
of the trivial vector bundle $ G ^ {k} ( V) \times V $
is defined as the quotient space of the product $ G ^ {k} ( V) \times V $
by the subbundle consisting of all pairs $ ( p, v) $,
$ v \in p $.
The concepts of a subbundle and a quotient bundle are used in contraction and glueing operations used to construct vector bundles over quotient spaces.
A $ B $-
morphism of vector bundles $ f : \pi \rightarrow \pi ^ \prime $
is said to be of constant rank (pure) if $ \mathop{\rm dim} \mathop{\rm ker} f \ \mid _ {\pi ^ {- 1} ( b) } $
is locally constant on $ B $.
Injective and surjective morphisms are exact and are said to be monomorphisms and epimorphisms of the vector bundle, respectively. The following vector bundles are uniquely defined for a morphism $ f $
of locally constant rank: $ \mathop{\rm Ker} f $ (the kernel of $ f $),
which is a subbundle of $ \pi $;
$ \mathop{\rm Im} f $ (the image of $ f $),
which is a subbundle of $ \pi ^ \prime $;
$ \mathop{\rm Coker} f $ (the cokernel of $ f $),
which is a quotient bundle of $ \pi $;
and $ \mathop{\rm Coim} f $ (the co-image of $ f $),
which is a quotient bundle of $ \pi ^ \prime $.
Any subbundle $ \pi _ {1} $
is the image of some monomorphism $ i: \pi _ {1} \rightarrow \pi $,
while any quotient bundle $ \pi _ {2} $
is the cokernel of some epimorphism $ j : \pi \rightarrow \pi _ {2} $.
A sequence of $ B $-
morphisms of vector bundles
$$
{} \cdots \rightarrow \pi ^ \prime \rightarrow \pi \rightarrow \pi ^ {\prime\prime} \rightarrow \cdots
$$
is said to be exact if the sequence
$$
{} \cdots \rightarrow ( \pi ^ \prime ) ^ {-1} ( b) \rightarrow \pi ^ {-1} ( b)
\rightarrow ( \pi ^ {\prime\prime} ) ^ {-1} ( b) \rightarrow \cdots
$$
is exact for all $ b \in B $.
In particular, the sequence
$$
0 \rightarrow \pi _ {1} \rightarrow ^ { i } \pi \rightarrow ^ { j } \pi _ {2} \rightarrow 0 ,
$$
where $ 0 $
is the zero vector bundle, is exact if $ i $
is a monomorphism, $ j $
is an epimorphism and $ \mathop{\rm Im} i = { \mathop{\rm Ker} } j $.
The set of vector bundles over $ B $
and $ B $-
morphisms of locally constant rank forms an exact subcategory $ \mathbf{Bund} _ {B} $
of the category $ \mathbf{Bund} $.
For any vector bundle $ \pi : X \rightarrow B $
and mapping $ u: B _ {1} \rightarrow B $,
the induced fibre bundle $ u ^ {*} ( \pi ) $
is endowed with a vector bundle structure such that the morphism $ U: u ^ {*} ( \pi ) \rightarrow \pi $
is a vector bundle morphism. This structure is unique and has the following property: Every fibre mapping $ {( u ^ {*} ( \pi )) } ^ {-1} ( b) \rightarrow \pi ^ {-1} ( u( b)) $
is an isomorphism of vector spaces. For instance, a vector bundle of dimension $ k $
over a paracompact space $ B $
is isomorphic to one of the vector bundles $ u ^ {*} ( \gamma _ {k} ) $
and $ \widetilde{u} {} ^ {*} ( \gamma ^ {k} ) $
induced by certain mappings $ u: B \rightarrow G _ {k} ( V) $
and $ \widetilde{u} : B \rightarrow G ^ {k} ( V) $,
respectively; moreover, homotopic mappings induce isomorphic vector bundles and, if $ \mathop{\rm dim} V \neq \infty $,
the converse is true: To isomorphic vector bundles there correspond homotopic mappings $ u $
and $ \widetilde{u} $.
This is one of the fundamental theorems in the homotopic classification of vector bundles, expressing the universal character of the vector bundles $ \gamma _ {k} $
and $ \gamma ^ {k} $
with respect to the classifying mappings $ u $
and $ \widetilde{u} $.
Any continuous operation (functor) $ T $
on the category of vector spaces uniquely determines a continuous functor on the category of vector bundles over $ B $;
in this way it is possible to construct bundles associated with a given vector bundle: tensor bundles, vector bundles of morphisms $ { \mathop{\rm Hom} } _ {B} ( \pi , \pi ^ \prime ) $
and, in particular, the dual vector bundle $ \pi ^ {*} $,
exterior powers of vector bundles, etc., whose sections are vector bundles with supplementary structures. These are extensively employed in practical applications.
A direct sum (Whitney sum) $ \pi \oplus \pi ^ \prime $
and tensor product $ \pi \otimes \pi ^ \prime $
have been defined for two vector bundles $ \pi $
and $ \pi ^ \prime $.
With respect to these operations the set of classes $ { \mathop{\rm Vekt} } _ {B} $
of isomorphic vector bundles over $ B $
forms a semi-ring which plays an important part in the construction of a $ K $-functor; thus, if for vector bundles $ \pi $
and $ \pi ^ \prime $
there exist trivial vector bundles $ \theta $
and $ \theta ^ \prime $
such that the vector bundles $ \pi \oplus \theta $
and $ \pi ^ \prime \oplus \theta ^ \prime $
are isomorphic (i.e. $ \pi $
and $ \pi ^ \prime $
are stably equivalent), then their images in the "completion" $ K ( B) $
of the semi-ring $ { \mathop{\rm Vekt} } _ {B} $
are identical; moreover, the fact that the ring $ K( B) $
and the set of classes of stably-equivalent vector bundles coincide follows from the existence of an inverse vector bundle for any vector bundle over a paracompact space.
For any vector bundle $ \pi : X \rightarrow B $
over a paracompact space $ B $
there exists a section $ \beta $
of the vector bundle
$$
\pi ^ {*} \oplus \pi ^ {*} = \mathop{\rm Hom} ( \pi \oplus \pi , P ),
$$
where $ P $
is a trivial one-dimensional vector bundle, which on each fibre $ \pi ^ {-1} ( b) $
is a positive-definite form, i.e. $ \pi $
is metrizable; this makes it possible to establish, in particular, the splittability of an arbitrary exact sequence of vector bundles
$$
0 \rightarrow \xi \rightarrow ^ { u } \pi \rightarrow ^ { v } \zeta \rightarrow 0
$$
in which $ \pi $
is metrizable, that is, the existence of a morphism $ w : \xi \oplus \zeta \rightarrow \pi $
such that $ wi = u $,
$ vw = j $,
where $ i $
is the imbedding into the first term and $ j $
is the projection onto the second term.
If, in each fibre $ \pi ^ {-1} ( b) $
of the vector bundle $ \pi : X \rightarrow B $,
one identifies the points lying on the same line passing through zero, one obtains a bundle $ \pi _ {0} : \Pi _ {( \pi ) } \rightarrow B $,
which is associated with $ \pi $
and is said to be its projectivization; a fibre of $ \pi _ {0} $
is the projective space $ \Pi ( V) $
which is associated with $ V $.
This bundle is used to study Thom spaces $ T ( \pi ) = \Pi ( \pi \oplus P)/ \Pi ( \pi ) $ (cf. Thom space), used in the homotopic interpretation of classes of bordant manifolds, characteristic classes of vector bundles describing the homological properties of manifolds, etc.
The concept of a vector bundle can be generalized to the case when the fibre is an infinite-dimensional vector space; in doing so, one must distinguish between the different topologies of the space of morphisms $ { \mathop{\rm Hom} } ( \pi , \pi ^ \prime ) $,
suitably modify the definitions of a pure morphism and an exact sequence of morphisms, and also the construction of vector bundles associated with continuous functors on the category of infinite-dimensional vector spaces.
For more on the universality and classifying properties of the bundles $ \gamma ^ {k} $
and $ \gamma _ {k} $
cf. Classifying space or [a1].
References
[1] | C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969) MR0242081 Zbl 0653.53001 Zbl 0284.53018 |
[2] | M.F. Atiyah, "$K$-theory: lectures" , Benjamin (1967) MR224083 |
[3] | S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III MR1931083 MR1532744 MR0155257 Zbl 1008.57001 Zbl 0103.15101 |
[4] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) MR0229247 Zbl 0144.44804 |
[5] | S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) MR0533884 Zbl 0444.32004 |
[6] | F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) MR1335917 MR0202713 Zbl 0376.14001 |
[a1] | J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) MR0440554 Zbl 0298.57008 |