|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Invariants connected with the module structure of the one-dimensional homology of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113001.png" />, freely acted upon by a free Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113002.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113003.png" /> with a fixed system of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113004.png" />.
| + | <!-- |
| + | a0113001.png |
| + | $#A+1 = 172 n = 1 |
| + | $#C+1 = 172 : ~/encyclopedia/old_files/data/A011/A.0101300 Alexander invariants |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The projection of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113005.png" /> onto the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113006.png" /> of orbits (cf. [[Orbit|Orbit]]) is a [[Covering|covering]] which corresponds to the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113007.png" /> of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113008.png" /> of the [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a0113009.png" /> of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130010.png" />. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130011.png" />, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130013.png" /> is the [[Commutator subgroup|commutator subgroup]] of the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130014.png" />, is isomorphic to the one-dimensional homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130015.png" />. The extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130016.png" /> generates the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130017.png" />, which determines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130018.png" /> the structure of a module over the integer group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130019.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130020.png" /> (cf. [[Group algebra|Group algebra]]). The same structure is induced on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130021.png" /> by the given action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130023.png" />. Fixation of the generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130025.png" /> identifies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130026.png" /> with the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130027.png" /> of Laurent polynomials in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130028.png" />. Purely algebraically the extension
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | defines and is defined by the extension of modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130029.png" /> [[#References|[5]]]. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130030.png" /> is the kernel of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130031.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130032.png" />. The module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130033.png" /> is called the Alexander module of the covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130034.png" />. In the case first studied by J.W. Alexander [[#References|[1]]] when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130035.png" /> is the complementary space of some link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130036.png" /> of multiplicity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130037.png" /> in the three-dimensional sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130038.png" />, while the covering corresponds to the commutation homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130039.png" /> of the link group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130040.png" /> is the Alexander module of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130041.png" />. The principal properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130042.png" /> which are relevant to what follows are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130043.png" /> is a free Abelian group, the defect of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130044.png" /> is 1, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130045.png" /> has the presentation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130046.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130048.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130050.png" /> (cf. [[Knot and link diagrams|Knot and link diagrams]]). In the case of links the generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130051.png" /> correspond to the meridians of the components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130052.png" /> and are fixed by the orientations of these components and of the sphere.
| + | Invariants connected with the module structure of the one-dimensional homology of a manifold $ \widetilde{M} $, |
| + | freely acted upon by a free Abelian group $ J ^ {a} $ |
| + | of rank $ a $ |
| + | with a fixed system of generators $ t _ {1} \dots t _ {a} $. |
| | | |
− | As a rule, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130053.png" /> is the complementary space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130055.png" />, consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130056.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130057.png" />-dimensional spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130058.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130059.png" />. In addition to the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130060.png" />, one also considers the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130061.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130062.png" /> is equal to the sum of the link coefficients of the [[Loop|loop]] representing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130063.png" /> with all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130064.png" />.
| + | The projection of the manifold $ \widetilde{M} $ |
| + | onto the space $ M $ |
| + | of orbits (cf. [[Orbit|Orbit]]) is a [[Covering|covering]] which corresponds to the kernel $ K _ {a} $ |
| + | of the homomorphism $ \gamma : G \rightarrow J _ {a} $ |
| + | of the [[Fundamental group|fundamental group]] $ \pi _ {1} (M) = G $ |
| + | of the manifold $ M $. |
| + | Since $ K _ {a} = \pi _ {1} ( \widetilde{M} ) $, |
| + | the group $ B _ {a} = K _ {a} / K _ {a} ^ \prime $, |
| + | where $ K _ {a} ^ \prime $ |
| + | is the [[Commutator subgroup|commutator subgroup]] of the kernel $ K _ {a} $, |
| + | is isomorphic to the one-dimensional homology group $ H _ {1} ( \widetilde{M} , \mathbf Z ) $. |
| + | The extension $ 1 \rightarrow K _ {a} \rightarrow G \rightarrow J ^ {a} \rightarrow 1 $ |
| + | generates the extension $ (*) : 1 \rightarrow B _ {a} \rightarrow G/ K _ {a} ^ \prime \rightarrow J ^ {a} \rightarrow 1 $, |
| + | which determines on $ B _ {a} $ |
| + | the structure of a module over the integer group ring $ \mathbf Z (J ^ {a} ) $ |
| + | of the group $ J ^ {a} $( |
| + | cf. [[Group algebra|Group algebra]]). The same structure is induced on $ B _ {a} $ |
| + | by the given action of $ J ^ {a} $ |
| + | on $ \widetilde{M} $. |
| + | Fixation of the generators $ t _ {i} $ |
| + | in $ J ^ {a} $ |
| + | identifies $ \mathbf Z ( J ^ {a} ) $ |
| + | with the ring $ L _ {a} = L _ {a} (t _ {1} \dots t _ {a} ) = \mathbf Z [ t _ {1} , t ^ {-1} \dots t _ {a} , t _ {a} ^ {-1} ] $ |
| + | of Laurent polynomials in the variables $ t _ {i} $. |
| + | Purely algebraically the extension |
| | | |
− | The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130065.png" /> of the module relations of a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130066.png" /> is called the Alexander covering matrix and, in the case of links, the Alexander link matrix. It may be obtained as the matrix
| + | defines and is defined by the extension of modules $ (**): 0 \rightarrow B _ {a} \rightarrow A _ {a} \rightarrow I _ {a} \rightarrow 0 $[[#References|[5]]]. Here $ I _ {a} $ |
| + | is the kernel of the homomorphism $ \epsilon : L _ {a} \rightarrow \mathbf Z $ |
| + | $ ( \epsilon t _ {i} = 1 ) $. |
| + | The module $ A _ {a} $ |
| + | is called the Alexander module of the covering $ \widetilde{M} \rightarrow M $. |
| + | In the case first studied by J.W. Alexander [[#References|[1]]] when $ M = M (k) $ |
| + | is the complementary space of some link $ k $ |
| + | of multiplicity $ \mu $ |
| + | in the three-dimensional sphere $ S ^ {3} $, |
| + | while the covering corresponds to the commutation homomorphism $ \gamma _ \mu : G(k) \rightarrow J ^ \mu $ |
| + | of the link group, $ A _ \mu $ |
| + | is the Alexander module of the link $ k $. |
| + | The principal properties of $ G $ |
| + | which are relevant to what follows are: $ G/ G ^ \prime $ |
| + | is a free Abelian group, the defect of the group $ G $ |
| + | is 1, $ G $ |
| + | has the presentation $ \{ x _ {1} \dots x _ {m+1} ; r _ {1} \dots r _ {m} \} $ |
| + | for which $ \gamma _ \mu (x _ {i} ) = t _ {i} $, |
| + | $ 1 \leq i \leq \mu $; |
| + | $ \gamma _ \nu (x _ {i} ) = 1 $, |
| + | $ i > \mu $( |
| + | cf. [[Knot and link diagrams|Knot and link diagrams]]). In the case of links the generators $ t _ {i} \in J ^ \mu $ |
| + | correspond to the meridians of the components $ k _ {i} \subset k $ |
| + | and are fixed by the orientations of these components and of the sphere. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130067.png" /></td> </tr></table>
| + | As a rule, $ M $ |
| + | is the complementary space $ M(k) $ |
| + | of $ k $, |
| + | consisting of $ \mu $ |
| + | $ (n - 2) $- |
| + | dimensional spheres $ k _ {i} $ |
| + | in $ S ^ {n} $. |
| + | In addition to the homomorphism $ \gamma _ {m} $, |
| + | one also considers the homomorphism $ \gamma _ \sigma : G(k) \rightarrow J $, |
| + | where $ \gamma (x) $ |
| + | is equal to the sum of the link coefficients of the [[Loop|loop]] representing $ x $ |
| + | with all $ k _ {i} $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130068.png" /> is a presentation of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130069.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130070.png" />, the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130071.png" /> of module relations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130072.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130073.png" /> by discarding the zero column. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130075.png" /> are defined by the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130077.png" /> up to transformations corresponding to transitions to other presentations of the module. However, they can be used to calculate a number of module invariants. Alexander ideals are ideals of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130078.png" />, i.e. series of ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130079.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130080.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130081.png" /> is generated by the minors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130082.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130084.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130085.png" />. The opposite numbering sequence may also be employed. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130086.png" /> is both a Gaussian ring and a Noetherian ring, each ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130087.png" /> lies in a minimal principal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130088.png" />; its generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130089.png" /> is defined up to unit divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130090.png" />. The Laurent polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130091.png" /> is simply called the Alexander polynomial of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130092.png" /> (or of the covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130093.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130094.png" />, it is multiplied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130095.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130097.png" />. To the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130098.png" /> there correspond a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130099.png" />, ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300100.png" /> and polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300101.png" />, designated, respectively, as Alexander's reduced module, Alexander's reduced ideals and Alexander's reduced polynomials of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300102.png" /> (or of the covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300103.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300104.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300105.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300106.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300107.png" /> by replacing all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300108.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300109.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300110.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300111.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300112.png" />. The polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300113.png" /> is known as the Hosokawa polynomial. The module properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300114.png" /> have been studied [[#References|[4]]], [[#References|[8]]], [[#References|[10]]]. The case of links has not yet been thoroughly investigated. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300115.png" />, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300116.png" /> is finitely generated over any ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300117.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300118.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300119.png" /> is invertible [[#References|[7]]], in particular over the field of rational numbers, and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300120.png" />, then also over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300121.png" />. In such a case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300122.png" /> is the characteristic polynomial of the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300123.png" />. The degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300124.png" /> is equal to the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300125.png" />; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300126.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300127.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300128.png" />, the link ideals have the following symmetry property: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300129.png" />, where the bar denotes that the image is taken under the automorphism generated by replacing all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300130.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300131.png" />. It follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300132.png" /> for certain integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300133.png" />. This symmetry is the result of the Fox–Trotter duality for knot and link groups. It may also be deduced from the [[Poincaré duality|Poincaré duality]] for the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300134.png" />, taking into account the free action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300135.png" /> [[#References|[3]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300136.png" />, then the chain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300137.png" /> over the field of fractions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300138.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300139.png" /> is acyclic (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300140.png" />), and the [[Reidemeister torsion|Reidemeister torsion]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300141.png" /> corresponding to the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300142.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300143.png" /> is the group of units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300144.png" />, is defined accordingly. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300145.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300146.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300147.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300148.png" /> (up to units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300149.png" />). The symmetry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300150.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300151.png" /> is a consequence of the symmetry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300152.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300153.png" />, it follows from the symmetry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300154.png" /> and from the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300155.png" /> that the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300156.png" /> is even. The degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300157.png" /> is also even [[#References|[4]]]. The following properties of the knot polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300158.png" /> are characteristic: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300159.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300160.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300161.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300162.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300163.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300164.png" /> greater than a certain value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300165.png" />, i.e. for each selection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300166.png" /> with these properties there exists a knot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300167.png" /> for which they serve as the Alexander polynomials. The Hosokawa polynomials [[#References|[4]]] are characterized by the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300168.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300169.png" />; the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300170.png" /> of two-dimensional knots by the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300171.png" />.
| + | The matrix $ \mathfrak M _ {a} $ |
| + | of the module relations of a module $ A _ {a} $ |
| + | is called the Alexander covering matrix and, in the case of links, the Alexander link matrix. It may be obtained as the matrix |
| | | |
− | Alexander invariants, and in the first place the polynomials, are powerful tools for distinguishing knots and links. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300172.png" /> fails to distinguish between only three pairs out of the knots in a table containing fewer than 9 double points (cf. [[Knot table|Knot table]]). See also [[Knot theory|Knot theory]]; [[Alternating knots and links|Alternating knots and links]]. | + | $$ |
| + | \left ( |
| + | \frac{\partial r _ {i} }{\partial x _ {j} } |
| + | \right ) ^ {\gamma _ {a} \phi } , |
| + | $$ |
| + | |
| + | where $ \{ x _ {i} ; r _ {i} \} $ |
| + | is a presentation of the group $ G $. |
| + | If $ \mu = 1 $, |
| + | the matrix $ \mathfrak N _ {a} $ |
| + | of module relations for $ B _ {a} $ |
| + | is obtained from $ \mathfrak M _ {a} $ |
| + | by discarding the zero column. The matrices $ \mathfrak M _ {a} $ |
| + | and $ \mathfrak N _ {a} $ |
| + | are defined by the modules $ A _ {a} $ |
| + | and $ B _ {a} $ |
| + | up to transformations corresponding to transitions to other presentations of the module. However, they can be used to calculate a number of module invariants. Alexander ideals are ideals of the module $ A _ {a} $, |
| + | i.e. series of ideals $ E _ {i} ( A _ {a} ) $ |
| + | of the ring $ L _ {a} : (0) \subseteq E _ {0} \subseteq \dots \subseteq E _ {i-1} \subseteq E _ {i} \subseteq \dots \subseteq (1) $, |
| + | where $ E _ {i} $ |
| + | is generated by the minors of $ \mathfrak M _ {a} $ |
| + | of order $ (m - i) \times (m - i) $ |
| + | and $ E _ {i} = L _ {a} $ |
| + | for $ m - i < 1 $. |
| + | The opposite numbering sequence may also be employed. Since $ L _ {a} $ |
| + | is both a Gaussian ring and a Noetherian ring, each ideal $ E _ {i} $ |
| + | lies in a minimal principal ideal $ ( \Delta _ {i} ) $; |
| + | its generator $ \Delta _ {i} $ |
| + | is defined up to unit divisors $ t _ {i} ^ {k} $. |
| + | The Laurent polynomial $ \Delta _ {i} (t _ {1} \dots t _ \mu ) $ |
| + | is simply called the Alexander polynomial of $ k $( |
| + | or of the covering $ \widetilde{M} \rightarrow M $). |
| + | If $ \Delta _ {i} \neq 0 $, |
| + | it is multiplied by $ t _ {1} ^ {k _ {1} } \dots t _ \mu ^ {k _ \mu } $ |
| + | so that $ \Delta _ {i} (0 \dots 0) \neq 0 $ |
| + | and $ \neq \infty $. |
| + | To the homomorphism $ \gamma _ \sigma $ |
| + | there correspond a module $ \overline{A}\; $, |
| + | ideals $ \overline{E}\; _ {i} $ |
| + | and polynomials $ \overline \Delta \; _ {i} $, |
| + | designated, respectively, as Alexander's reduced module, Alexander's reduced ideals and Alexander's reduced polynomials of $ k $( |
| + | or of the covering $ {\widetilde{M} } _ \sigma \rightarrow M $). |
| + | If $ \mu = 1 $, |
| + | then $ A = \overline{A}\; $. |
| + | $ \mathfrak M ( \overline{A}\; ) $ |
| + | is obtained from $ \mathfrak M $ |
| + | by replacing all $ t _ {i} $ |
| + | by $ t $. |
| + | If $ \mu \geq 2 $, |
| + | $ \overline \Delta \; _ {1} $ |
| + | is divisible by $ {(t - 1) } ^ {\mu - 2 } $. |
| + | The polynomial $ \nabla (t) = {\overline \Delta \; } _ {1} (t) / {(t - 1) } ^ {\mu - 2 } $ |
| + | is known as the Hosokawa polynomial. The module properties of $ A (k) $ |
| + | have been studied [[#References|[4]]], [[#References|[8]]], [[#References|[10]]]. The case of links has not yet been thoroughly investigated. For $ \mu = 1 $, |
| + | the group $ H _ {1} ( \widetilde{M} ; R) $ |
| + | is finitely generated over any ring $ R $ |
| + | containing $ \mathbf Z $ |
| + | in which $ \Delta (0) $ |
| + | is invertible [[#References|[7]]], in particular over the field of rational numbers, and, if $ \Delta (0) = +1 $, |
| + | then also over $ \mathbf Z $. |
| + | In such a case $ \Delta (t) $ |
| + | is the characteristic polynomial of the transformation $ t : H _ {1} ( \widetilde{M} ; R) \rightarrow H _ {1} ( \widetilde{M} ; R) $. |
| + | The degree of $ \Delta _ {1} (t) $ |
| + | is equal to the rank of $ H _ {1} ( \widetilde{M} ; R) $; |
| + | in particular, $ \Delta _ {1} (t) = 1 $ |
| + | if and only if $ H _ {1} ( \widetilde{M} ; \mathbf Z) = 0 $. |
| + | If $ n = 3 $, |
| + | the link ideals have the following symmetry property: $ E _ {i} = {\overline{E}\; } _ {i} $, |
| + | where the bar denotes that the image is taken under the automorphism generated by replacing all $ t _ {i} $ |
| + | by $ t _ {i} ^ {-1} $. |
| + | It follows that $ \Delta _ {i} ( t _ {1} ^ {-1} \dots t _ \mu ^ {-1} ) = t _ {1} ^ {N _ {1} } \dots t _ \mu ^ {N _ \mu } \Delta _ {i} ( t _ {1} \dots t _ \mu ) $ |
| + | for certain integers $ N _ {i} $. |
| + | This symmetry is the result of the Fox–Trotter duality for knot and link groups. It may also be deduced from the [[Poincaré duality|Poincaré duality]] for the manifold $ \widetilde{M} $, |
| + | taking into account the free action of $ J ^ {a} $[[#References|[3]]]. If $ \Delta _ {1} (t _ {1} \dots t _ \mu ) \neq 0 $, |
| + | then the chain complex $ C _ {*} ( \widetilde{M} ) $ |
| + | over the field of fractions $ P _ \mu $ |
| + | of the ring $ L _ \mu $ |
| + | is acyclic ( $ n = 3 $), |
| + | and the [[Reidemeister torsion|Reidemeister torsion]] $ \tau \in P _ \mu / \Pi $ |
| + | corresponding to the imbedding $ L _ \mu \subset P _ \mu $, |
| + | where $ \Pi $ |
| + | is the group of units of $ L _ \mu $, |
| + | is defined accordingly. If $ \mu = 2 $, |
| + | then $ \tau = \Delta _ {1} $; |
| + | if $ \mu = 1 $, |
| + | then $ \tau = \Delta _ {1} / t - 1 $( |
| + | up to units of $ L _ \mu $). |
| + | The symmetry of $ \Delta _ {1} $ |
| + | for $ n = 3 $ |
| + | is a consequence of the symmetry of $ \tau $. |
| + | If $ \mu = 1 $, |
| + | it follows from the symmetry of $ \Delta _ {i} (t) $ |
| + | and from the property $ \Delta _ {i} (1) = \pm 1 $ |
| + | that the degree of $ \Delta _ {i} (t) $ |
| + | is even. The degree of $ \nabla (t) $ |
| + | is also even [[#References|[4]]]. The following properties of the knot polynomials $ \Delta _ {i} (t) $ |
| + | are characteristic: $ \Delta _ {i} (1) = \pm 1 $; |
| + | $ \Delta _ {i} (t) = t ^ {2k} \Delta _ {i} ( t ^ {-1} ) $; |
| + | $ \Delta _ {i+1} $ |
| + | divides $ \Delta _ {i} $; |
| + | and $ \Delta _ {i} = 1 $ |
| + | for all $ i $ |
| + | greater than a certain value $ N $, |
| + | i.e. for each selection $ \Delta _ {i} (t) $ |
| + | with these properties there exists a knot $ k $ |
| + | for which they serve as the Alexander polynomials. The Hosokawa polynomials [[#References|[4]]] are characterized by the property $ \nabla (t) = t ^ {2k} \nabla (t ^ {-1} ) $ |
| + | for any $ \mu \geq 2 $; |
| + | the polynomials $ \Delta _ {1} $ |
| + | of two-dimensional knots by the property $ \Delta _ {1} (1) = 1 $. |
| + | |
| + | Alexander invariants, and in the first place the polynomials, are powerful tools for distinguishing knots and links. Thus, $ \Delta _ {1} $ |
| + | fails to distinguish between only three pairs out of the knots in a table containing fewer than 9 double points (cf. [[Knot table|Knot table]]). See also [[Knot theory|Knot theory]]; [[Alternating knots and links|Alternating knots and links]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W. Alexander, "Topological invariants of knots and links" ''Trans. Amer. Math. Soc.'' , '''30''' (1928) pp. 275–306</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K. Reidemeister, "Knotentheorie" , Chelsea, reprint (1948)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.C. Blanchfield, "Intersection theory of manifolds with operators with applications to knot theory" ''Ann. of Math. (2)'' , '''65''' : 2 (1957) pp. 340–356</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Hosokawa, "On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300173.png" />-polynomials of links" ''Osaka J. Math.'' , '''10''' (1958) pp. 273–282</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R.H. Crowell, "Corresponding groups and module sequences" ''Nagoya Math. J.'' , '''19''' (1961) pp. 27–40</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> L.P. Neuwirth, "Knot groups" , Princeton Univ. Press (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.H. Crowell, "Torsion in link modules" ''J. Math. Mech.'' , '''14''' : 2 (1965) pp. 289–298</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Levine, "A method for generating link polynomials" ''Amer. J. Math.'' , '''89''' (1967) pp. 69–84</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> J.W. Milnor, "Multidimensional knots" , ''Conference on the topology of manifolds'' , '''13''' , Boston (1968) pp. 115–133</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W. Alexander, "Topological invariants of knots and links" ''Trans. Amer. Math. Soc.'' , '''30''' (1928) pp. 275–306</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K. Reidemeister, "Knotentheorie" , Chelsea, reprint (1948)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.C. Blanchfield, "Intersection theory of manifolds with operators with applications to knot theory" ''Ann. of Math. (2)'' , '''65''' : 2 (1957) pp. 340–356</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Hosokawa, "On $\nabla$-polynomials of links" ''Osaka J. Math.'' , '''10''' (1958) pp. 273–282</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R.H. Crowell, "Corresponding groups and module sequences" ''Nagoya Math. J.'' , '''19''' (1961) pp. 27–40</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> L.P. Neuwirth, "Knot groups" , Princeton Univ. Press (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.H. Crowell, "Torsion in link modules" ''J. Math. Mech.'' , '''14''' : 2 (1965) pp. 289–298</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Levine, "A method for generating link polynomials" ''Amer. J. Math.'' , '''89''' (1967) pp. 69–84</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> J.W. Milnor, "Multidimensional knots" , ''Conference on the topology of manifolds'' , '''13''' , Boston (1968) pp. 115–133</TD></TR></table> |
Invariants connected with the module structure of the one-dimensional homology of a manifold $ \widetilde{M} $,
freely acted upon by a free Abelian group $ J ^ {a} $
of rank $ a $
with a fixed system of generators $ t _ {1} \dots t _ {a} $.
The projection of the manifold $ \widetilde{M} $
onto the space $ M $
of orbits (cf. Orbit) is a covering which corresponds to the kernel $ K _ {a} $
of the homomorphism $ \gamma : G \rightarrow J _ {a} $
of the fundamental group $ \pi _ {1} (M) = G $
of the manifold $ M $.
Since $ K _ {a} = \pi _ {1} ( \widetilde{M} ) $,
the group $ B _ {a} = K _ {a} / K _ {a} ^ \prime $,
where $ K _ {a} ^ \prime $
is the commutator subgroup of the kernel $ K _ {a} $,
is isomorphic to the one-dimensional homology group $ H _ {1} ( \widetilde{M} , \mathbf Z ) $.
The extension $ 1 \rightarrow K _ {a} \rightarrow G \rightarrow J ^ {a} \rightarrow 1 $
generates the extension $ (*) : 1 \rightarrow B _ {a} \rightarrow G/ K _ {a} ^ \prime \rightarrow J ^ {a} \rightarrow 1 $,
which determines on $ B _ {a} $
the structure of a module over the integer group ring $ \mathbf Z (J ^ {a} ) $
of the group $ J ^ {a} $(
cf. Group algebra). The same structure is induced on $ B _ {a} $
by the given action of $ J ^ {a} $
on $ \widetilde{M} $.
Fixation of the generators $ t _ {i} $
in $ J ^ {a} $
identifies $ \mathbf Z ( J ^ {a} ) $
with the ring $ L _ {a} = L _ {a} (t _ {1} \dots t _ {a} ) = \mathbf Z [ t _ {1} , t ^ {-1} \dots t _ {a} , t _ {a} ^ {-1} ] $
of Laurent polynomials in the variables $ t _ {i} $.
Purely algebraically the extension
defines and is defined by the extension of modules $ (**): 0 \rightarrow B _ {a} \rightarrow A _ {a} \rightarrow I _ {a} \rightarrow 0 $[5]. Here $ I _ {a} $
is the kernel of the homomorphism $ \epsilon : L _ {a} \rightarrow \mathbf Z $
$ ( \epsilon t _ {i} = 1 ) $.
The module $ A _ {a} $
is called the Alexander module of the covering $ \widetilde{M} \rightarrow M $.
In the case first studied by J.W. Alexander [1] when $ M = M (k) $
is the complementary space of some link $ k $
of multiplicity $ \mu $
in the three-dimensional sphere $ S ^ {3} $,
while the covering corresponds to the commutation homomorphism $ \gamma _ \mu : G(k) \rightarrow J ^ \mu $
of the link group, $ A _ \mu $
is the Alexander module of the link $ k $.
The principal properties of $ G $
which are relevant to what follows are: $ G/ G ^ \prime $
is a free Abelian group, the defect of the group $ G $
is 1, $ G $
has the presentation $ \{ x _ {1} \dots x _ {m+1} ; r _ {1} \dots r _ {m} \} $
for which $ \gamma _ \mu (x _ {i} ) = t _ {i} $,
$ 1 \leq i \leq \mu $;
$ \gamma _ \nu (x _ {i} ) = 1 $,
$ i > \mu $(
cf. Knot and link diagrams). In the case of links the generators $ t _ {i} \in J ^ \mu $
correspond to the meridians of the components $ k _ {i} \subset k $
and are fixed by the orientations of these components and of the sphere.
As a rule, $ M $
is the complementary space $ M(k) $
of $ k $,
consisting of $ \mu $
$ (n - 2) $-
dimensional spheres $ k _ {i} $
in $ S ^ {n} $.
In addition to the homomorphism $ \gamma _ {m} $,
one also considers the homomorphism $ \gamma _ \sigma : G(k) \rightarrow J $,
where $ \gamma (x) $
is equal to the sum of the link coefficients of the loop representing $ x $
with all $ k _ {i} $.
The matrix $ \mathfrak M _ {a} $
of the module relations of a module $ A _ {a} $
is called the Alexander covering matrix and, in the case of links, the Alexander link matrix. It may be obtained as the matrix
$$
\left (
\frac{\partial r _ {i} }{\partial x _ {j} }
\right ) ^ {\gamma _ {a} \phi } ,
$$
where $ \{ x _ {i} ; r _ {i} \} $
is a presentation of the group $ G $.
If $ \mu = 1 $,
the matrix $ \mathfrak N _ {a} $
of module relations for $ B _ {a} $
is obtained from $ \mathfrak M _ {a} $
by discarding the zero column. The matrices $ \mathfrak M _ {a} $
and $ \mathfrak N _ {a} $
are defined by the modules $ A _ {a} $
and $ B _ {a} $
up to transformations corresponding to transitions to other presentations of the module. However, they can be used to calculate a number of module invariants. Alexander ideals are ideals of the module $ A _ {a} $,
i.e. series of ideals $ E _ {i} ( A _ {a} ) $
of the ring $ L _ {a} : (0) \subseteq E _ {0} \subseteq \dots \subseteq E _ {i-1} \subseteq E _ {i} \subseteq \dots \subseteq (1) $,
where $ E _ {i} $
is generated by the minors of $ \mathfrak M _ {a} $
of order $ (m - i) \times (m - i) $
and $ E _ {i} = L _ {a} $
for $ m - i < 1 $.
The opposite numbering sequence may also be employed. Since $ L _ {a} $
is both a Gaussian ring and a Noetherian ring, each ideal $ E _ {i} $
lies in a minimal principal ideal $ ( \Delta _ {i} ) $;
its generator $ \Delta _ {i} $
is defined up to unit divisors $ t _ {i} ^ {k} $.
The Laurent polynomial $ \Delta _ {i} (t _ {1} \dots t _ \mu ) $
is simply called the Alexander polynomial of $ k $(
or of the covering $ \widetilde{M} \rightarrow M $).
If $ \Delta _ {i} \neq 0 $,
it is multiplied by $ t _ {1} ^ {k _ {1} } \dots t _ \mu ^ {k _ \mu } $
so that $ \Delta _ {i} (0 \dots 0) \neq 0 $
and $ \neq \infty $.
To the homomorphism $ \gamma _ \sigma $
there correspond a module $ \overline{A}\; $,
ideals $ \overline{E}\; _ {i} $
and polynomials $ \overline \Delta \; _ {i} $,
designated, respectively, as Alexander's reduced module, Alexander's reduced ideals and Alexander's reduced polynomials of $ k $(
or of the covering $ {\widetilde{M} } _ \sigma \rightarrow M $).
If $ \mu = 1 $,
then $ A = \overline{A}\; $.
$ \mathfrak M ( \overline{A}\; ) $
is obtained from $ \mathfrak M $
by replacing all $ t _ {i} $
by $ t $.
If $ \mu \geq 2 $,
$ \overline \Delta \; _ {1} $
is divisible by $ {(t - 1) } ^ {\mu - 2 } $.
The polynomial $ \nabla (t) = {\overline \Delta \; } _ {1} (t) / {(t - 1) } ^ {\mu - 2 } $
is known as the Hosokawa polynomial. The module properties of $ A (k) $
have been studied [4], [8], [10]. The case of links has not yet been thoroughly investigated. For $ \mu = 1 $,
the group $ H _ {1} ( \widetilde{M} ; R) $
is finitely generated over any ring $ R $
containing $ \mathbf Z $
in which $ \Delta (0) $
is invertible [7], in particular over the field of rational numbers, and, if $ \Delta (0) = +1 $,
then also over $ \mathbf Z $.
In such a case $ \Delta (t) $
is the characteristic polynomial of the transformation $ t : H _ {1} ( \widetilde{M} ; R) \rightarrow H _ {1} ( \widetilde{M} ; R) $.
The degree of $ \Delta _ {1} (t) $
is equal to the rank of $ H _ {1} ( \widetilde{M} ; R) $;
in particular, $ \Delta _ {1} (t) = 1 $
if and only if $ H _ {1} ( \widetilde{M} ; \mathbf Z) = 0 $.
If $ n = 3 $,
the link ideals have the following symmetry property: $ E _ {i} = {\overline{E}\; } _ {i} $,
where the bar denotes that the image is taken under the automorphism generated by replacing all $ t _ {i} $
by $ t _ {i} ^ {-1} $.
It follows that $ \Delta _ {i} ( t _ {1} ^ {-1} \dots t _ \mu ^ {-1} ) = t _ {1} ^ {N _ {1} } \dots t _ \mu ^ {N _ \mu } \Delta _ {i} ( t _ {1} \dots t _ \mu ) $
for certain integers $ N _ {i} $.
This symmetry is the result of the Fox–Trotter duality for knot and link groups. It may also be deduced from the Poincaré duality for the manifold $ \widetilde{M} $,
taking into account the free action of $ J ^ {a} $[3]. If $ \Delta _ {1} (t _ {1} \dots t _ \mu ) \neq 0 $,
then the chain complex $ C _ {*} ( \widetilde{M} ) $
over the field of fractions $ P _ \mu $
of the ring $ L _ \mu $
is acyclic ( $ n = 3 $),
and the Reidemeister torsion $ \tau \in P _ \mu / \Pi $
corresponding to the imbedding $ L _ \mu \subset P _ \mu $,
where $ \Pi $
is the group of units of $ L _ \mu $,
is defined accordingly. If $ \mu = 2 $,
then $ \tau = \Delta _ {1} $;
if $ \mu = 1 $,
then $ \tau = \Delta _ {1} / t - 1 $(
up to units of $ L _ \mu $).
The symmetry of $ \Delta _ {1} $
for $ n = 3 $
is a consequence of the symmetry of $ \tau $.
If $ \mu = 1 $,
it follows from the symmetry of $ \Delta _ {i} (t) $
and from the property $ \Delta _ {i} (1) = \pm 1 $
that the degree of $ \Delta _ {i} (t) $
is even. The degree of $ \nabla (t) $
is also even [4]. The following properties of the knot polynomials $ \Delta _ {i} (t) $
are characteristic: $ \Delta _ {i} (1) = \pm 1 $;
$ \Delta _ {i} (t) = t ^ {2k} \Delta _ {i} ( t ^ {-1} ) $;
$ \Delta _ {i+1} $
divides $ \Delta _ {i} $;
and $ \Delta _ {i} = 1 $
for all $ i $
greater than a certain value $ N $,
i.e. for each selection $ \Delta _ {i} (t) $
with these properties there exists a knot $ k $
for which they serve as the Alexander polynomials. The Hosokawa polynomials [4] are characterized by the property $ \nabla (t) = t ^ {2k} \nabla (t ^ {-1} ) $
for any $ \mu \geq 2 $;
the polynomials $ \Delta _ {1} $
of two-dimensional knots by the property $ \Delta _ {1} (1) = 1 $.
Alexander invariants, and in the first place the polynomials, are powerful tools for distinguishing knots and links. Thus, $ \Delta _ {1} $
fails to distinguish between only three pairs out of the knots in a table containing fewer than 9 double points (cf. Knot table). See also Knot theory; Alternating knots and links.
References
[1] | J.W. Alexander, "Topological invariants of knots and links" Trans. Amer. Math. Soc. , 30 (1928) pp. 275–306 |
[2] | K. Reidemeister, "Knotentheorie" , Chelsea, reprint (1948) |
[3] | R.C. Blanchfield, "Intersection theory of manifolds with operators with applications to knot theory" Ann. of Math. (2) , 65 : 2 (1957) pp. 340–356 |
[4] | F. Hosokawa, "On $\nabla$-polynomials of links" Osaka J. Math. , 10 (1958) pp. 273–282 |
[5] | R.H. Crowell, "Corresponding groups and module sequences" Nagoya Math. J. , 19 (1961) pp. 27–40 |
[6] | R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963) |
[7] | L.P. Neuwirth, "Knot groups" , Princeton Univ. Press (1965) |
[8] | R.H. Crowell, "Torsion in link modules" J. Math. Mech. , 14 : 2 (1965) pp. 289–298 |
[9] | J. Levine, "A method for generating link polynomials" Amer. J. Math. , 89 (1967) pp. 69–84 |
[10] | J.W. Milnor, "Multidimensional knots" , Conference on the topology of manifolds , 13 , Boston (1968) pp. 115–133 |