Difference between revisions of "Cylinder functions"
(→Asymptotic behaviour: corrected the symbols for << and >>) |
m (→References: zbl link) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 139: | Line 139: | ||
For and \nu = n + \eta with n\in \mathbb N and \eta\in [0,1[ we have | For |z|\ll 1 and \nu = n + \eta with n\in \mathbb N and \eta\in [0,1[ we have | ||
\begin{align} | \begin{align} | ||
− | J_\nu (z) &\sim \frac{1}{\Gamma (\nu | + | J_\nu (z) &\sim \frac{1}{\Gamma (\nu+1)} \left(\frac{z}{2}\right)^\nu\\ |
− | J_{-\nu} (z) &\sim (-1)^n \Gamma (\nu | + | J_{-\nu} (z) &\sim (-1)^n \Gamma (\nu) \frac{\sin (\pi \eta)}{\eta} \left(\frac{2}{z}\right)^\nu\, . |
\end{align} | \end{align} | ||
Under the same assumptions for z=x\in \mathbb R: | Under the same assumptions for z=x\in \mathbb R: | ||
\begin{align} | \begin{align} | ||
Y_0 (x) &\sim \frac{2}{\pi} \left(\log x + C\right)\\ | Y_0 (x) &\sim \frac{2}{\pi} \left(\log x + C\right)\\ | ||
− | Y_\nu (x) &\sim -\frac{\Gamma (\nu | + | Y_\nu (x) &\sim -\frac{\Gamma (\nu)}{\pi} \left(\frac{2}{x}\right)^\nu\qquad \qquad n >0\, . |
\end{align} | \end{align} | ||
Next denote by (\nu, m) the Hankel symbol: | Next denote by (\nu, m) the Hankel symbol: | ||
\[ | \[ | ||
− | (\nu, m) = \frac{\Gamma \left(\nu + m + \frac{1}{2}\right)}{m!\Gamma \left(\nu - m | + | (\nu, m) = \frac{\Gamma \left(\nu + m + \frac{1}{2}\right)}{m!\Gamma \left(\nu - m + \frac{1}{2}\right)}\, . |
\] | \] | ||
For |z| \gg \max \{|\nu|^2, 1\} and -\pi < {\rm arg}\, z < \pi we have the following estimates: | For |z| \gg \max \{|\nu|^2, 1\} and -\pi < {\rm arg}\, z < \pi we have the following estimates: | ||
Line 319: | Line 319: | ||
|valign="top"|{{Ref|GR}}|| I.S., Gradshteyn, I.M. Ryzhik, "Table of integrals, series and products", Academic Press (2000) | |valign="top"|{{Ref|GR}}|| I.S., Gradshteyn, I.M. Ryzhik, "Table of integrals, series and products", Academic Press (2000) | ||
|- | |- | ||
− | |valign="top"|{{Ref|JJ'}}|| Harold Jeffreys, Bertha Jeffreys, ''Methods of Mathematical Physics'', 3rd edition, Cambridge University Press (1972) | + | |valign="top"|{{Ref|JJ'}}|| Harold Jeffreys, Bertha Jeffreys, ''Methods of Mathematical Physics'', 3rd edition, Cambridge University Press (1972) {{ZBL|0238.00004}} |
|- | |- | ||
|valign="top"|{{Ref|Le}}|| N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian) | |valign="top"|{{Ref|Le}}|| N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian) |
Revision as of 14:32, 19 March 2023
2020 Mathematics Subject Classification: Primary: 33C10 [MSN][ZBL]
Also generally called Bessel functions. Solutions Z_\nu of the Bessel differential equation \begin{equation}\label{e:Bessel} z^2 \frac{d^2 Z}{dz^2} + z \frac{dZ}{dz} + (z^2-\nu^2) Z = 0 \end{equation} where \nu is an arbitrary real or complex number. The cylinder functions are functions of one complex variable.
Cylinder functions of arbitrary order.
If \nu is not an integer, then the general solution of equation \eqref{e:Bessel} has the form c_1 J_\nu + c_{-1} J_{-\nu} where J_{\pm \nu} are the so-called cylinder functions of the first kind or Bessel functions of the first kind. They have the expansion \begin{equation}\label{e:Bessel_f} J_\nu (z) = \left(\frac{z}{2}\right)^\nu \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (\nu +m +1)} \left(\frac{z}{2}\right)^{2m} \, , \end{equation} where \Gamma is the Gamma-function (i.e. the standard extension of the factorial to a meromorphic function on \mathbb C) and z^\nu is given by {\rm exp}\, (\log z), with the convention of having chosen the determination of \log z such that -\pi < {\rm Im}\, (\log z) \leq \pi. The formula \eqref{e:Bessel_f} still makes sense when \nu is a nonnegative integer. For n\in \mathbb N the function J_{-n} is defined to be (-1)^n J_n. The Bessel functions of integer order are usually defined as the coefficients of the following Laurent series: \begin{equation}\label{e:Anger-Jacobi} e^{\frac{z}{2} \left(t - \frac{1}{t}\right)} = \sum_{n=-\infty}^\infty t^n J_n (z)\, . \end{equation} The series on the right-hand side of \eqref{e:Bessel_f} converges absolutely and uniformly on any compact subset of \mathbb C. The functions J_\nu are holomorphic on \mathbb C \setminus \{0\} (in fact they are entire functions when \nu is an integer). \infty is a singular point, in the sense of the theory of analytic functions.
If \nu is an integer, then J_{\pm \nu} are linearly dependent and the linear combinations of them no longer yield the general solutions of \eqref{e:Bessel}. Therefore, apart from cylinder functions of the first kind one introduces cylinder functions of the second kind, commonly called Bessel functions of the second kind (or Neumann functions, Weber functions, cf. Neumann functions): \begin{equation}\label{e:Bessel_f2} Y_\nu (z) = \frac{J_\nu (z) \cos \nu \pi - J_{-\nu} (z)}{\sin \nu \pi} \qquad \mbox{for}\; \nu\not\in \mathbb Z \end{equation} Y_n (z) = \lim_{\nu\to n} Y_\nu (z) \qquad \mbox{for}\; n\in \mathbb Z\, Another, less common notation, for the Bessel functions of the second kind is N_\nu. By means of these functions the general solution of equation \eqref{e:Bessel} can be written in the form Z_\nu = c_1 J_\nu + c_2 Y_\nu\, . For applications, a third class of solutions of \eqref{e:Bessel}, called cylinder functions of the third kind or Hankel functions are rather important They are denoted by H^{(1)}_\nu and H^{(2)}_\nu and defined as \begin{align} &H^{(1)}_\nu = J_\nu + i Y_\nu\\ &H^{(2)}_\nu = J_\nu - i Y_\nu\\ \end{align} In particular, when \nu\not\in \mathbb Z, we have the expressions \begin{align} &H^{(1)}_\nu (z) = \frac{J_{-\nu} (z) - e^{-\nu \pi i} J_\nu (z)}{i\sin \nu\pi}\\ &H^{(2)}_\nu (z) = \frac{J_{-\nu} (z) - e^{\nu \pi i} J_\nu (z)}{-i\sin \nu\pi i}\, , \end{align} whereas for integer values n of \nu analogous formulas hold if we replace the right hand sides with their limits as \nu\to n. When \nu\in \mathbb R, if we restrict the domain of the Hankel functions to the real axis, we get a pair of complex conjugate solutions of \eqref{e:Bessel}, of which the functions J_\nu give the real part and the functions Y_\nu give the imaginary part.
Each pair of functions \{J_\nu, J_{-\nu}\}, \{Y_\nu, Y_{-\nu}\} and \{H^{(1)}_\nu, H^{(2)}_\nu\} forms, when \nu\not\in \mathbb Z, a fundamental system of solutions of \eqref{e:Bessel}. The pairs \{J_\nu, Y_\nu\} and \{H^{(1)}_\nu, H^{(2)}_\nu\} form each a fundamental system of solutions for every value of \nu.
Some notable identities
We have the following important identities relating cylinder functions with their derivatives \begin{align} & \pi\, z \left( J_\nu (z) J'_{-\nu} (z) - J'_\nu (z) J_{-\nu} (z)\right) = - 2 \sin \nu\pi\\ & \pi\, z \left( J_\nu (z) Y'_{\nu} (z) - J'_\nu (z) Y_{\nu} (z)\right) = -2\\ & \pi\, z \left( H^{(1)}_\nu (z) (H^{(2)}_\nu)' (z)- (H^{(1)}_\nu)' (z) H^{(2)}_{\nu} (z) \right) = -4i \end{align} Similar formulas hold for expressions of the form J_\nu Y''_\nu - J''_\nu Y_\nu, J'_\nu Y''_\nu - J''_\nu Y'_\nu and so on (see Section 3.63 of [Wa]).
Moreover, all cylinder functions Z_\nu satisfy the recurrence formulas \begin{align} &z Z_{\nu-1} (z) + z Z_{\nu+1} (z) = 2\nu Z_\nu (z)\label{e:rec1}\\ & Z_{\nu-1} (z) - Z_{\nu+1} (z) = 2 Z'_\nu (z)\, . \end{align}
Modified cylinder functions
Modified cylinder functions are cylinder functions of an imaginary argument. For instance the function I_\nu is defined as I_\nu (z) = \left\{\begin{array}{l} &e^{-\frac{1}{2}\nu \pi i} J_\nu \left(z e^{\frac{1}{2}\pi i}\right) \qquad \mbox{if } -\pi < {\rm arg}\, z \leq \frac{\pi}{2}\\ &e^{\frac{3}{2}\nu \pi i} J_\nu \left(z e^{-\frac{3}{2}\pi i}\right) \qquad \mbox{if } \frac{\pi}{2} < {\rm arg}\, z \leq \pi \end{array}\right. and the Macdonald function K_\nu as K_\nu (z) = \frac{\pi i}{2} e^{\frac{1}{2}\nu \pi i} H^{(1)}_\nu (iz) = \frac{\pi i}{2} e^{-\frac{1}{2}\nu \pi i} H^{(1)}_{-\nu} (iz) (in particular observe that K_{-\nu} = K_\nu). Obviously these functions are solutions of the differential equation z^2 \frac{d^2 Z}{dz^2} + z \frac{dZ}{dz} - (\nu^2 + z^2) Z = 0 and in fact \{I_\nu, K_\nu\} forms a fundamental system of solutions (similar to what happens for the usual cylinder functions, the pair \{I_\nu, I_{-\nu}\} forms a fundamental system only when \nu is not an integer).
Moreover, the modified cylinder functions satisfy the recurrence relation \begin{align} &z (I_{\nu-1} (z) + I_{\nu+1} (z)) = 2 \nu I_\nu (z)\label{e:rec2}\\ &z (K_{\nu-1} (z) + K_{\nu+1} (z)) = 2 \nu K_\nu (z)\, . \end{align}
Cylinder functions of integral and half-integral orders.
If \nu=n\in \mathbb Z the Bessel functions J_n of the first kind satisfy \eqref{e:Anger-Jacobi}, which is called Anger-Jacobi formula and which can be usefully rewritten as the identity e^{\pm i z\sin \theta} = J_0 (z) + 2 \sum_{j=1}^\infty \left( J_{2n} (z) \sin 2n \theta \pm J_{2n+1} (z) \sin\, (2n+1)\theta\right)\, . Moreover J_{-n} = (-1)^n J_n, whereas the series \eqref{e:Bessel_f} still makes sense for n \geq 0. In particular this shows that J_n is an entire function of the argument z. J_n is in fact [[Transcendental function|transcendental and when z is a nonzero algebraic number, J_n (z) is a transcendental number, and J_n (z)\neq J_m (z) whenever n\geq m.
As already mentioned the pair \{J_\nu, Y_\nu\} is a fundamental system of solution of Bessel's equation z^2 Z'' (z) + z Z' (z) + (z^2-n^2) Z(z) =0. The following expressions are valid for Y_n: \begin{align} Y_n (z) &= \lim_{\nu\to n} Y_\nu (z) = \lim_{\nu\to n} \frac{J_\nu (z) \cos \nu \pi - J_{-\nu} (z)}{\sin \nu\pi}\\ &=\frac{1}{\pi} \lim_{\nu\to n} \frac{J_\nu (z) - (-1)^n J_{-\nu} (z)}{\nu -n} =\frac{1}{\pi} \left[\left.\frac{\partial J_\nu}{\partial \nu}\right|_{\nu =n} (z) - (-1)^n \left.\frac{\partial J_{-\nu}}{\partial \nu}\right|_{\nu =n} (z)\right]\\ &= \frac{2}{\pi} \left(\gamma + \log \frac{z}{2}\right) J_n (z) - \frac{2^n}{\pi z^n} \sum_{m=0}^{n-1} \frac{(-1)^m}{m! (n+m)!} \left(\frac{z}{2}\right)^{n+2m} - \frac{z^n}{\pi 2^n} \sum_{m=0}^\infty \frac{(-1)^m}{m! (n+m)!} \left(\frac{z}{2}\right)^m \left(\sum_{l=1}^m \frac{1}{l} + \sum_{l=1}^{m+n} \frac{1}{l}\right)\, .\label{e:expansion_of_Y} \end{align} where \gamma is the Euler constant and the latter expansion is valid for n\in \mathbb N (for n \in \mathbb Z\setminus \mathbb N a corresponding identity can be derived from the relation Y_{-n} = (-1)^n Y_n.
Half-integral orders
Cylinder functions turn into elementary functions if and only if the index \nu is an half integer, i.e. of the form \nu = \frac{1}{2} + n with n \in \mathbb N. In particular he following formulas hold for all n\in \mathbb N: \begin{align} J_{n+\frac{1}{2}} (z) & = (-1)^n \sqrt{\frac{2}{\pi}} z^{n+\frac{1}{2}} \left(\frac{1}{z} \frac{d}{dz}\right)^n \frac{\sin z}{z}\, ,\\ J_{-n+\frac{1}{2}} (z) &= \sqrt{\frac{2}{\pi}} z^{n+\frac{1}{2}} \left(\frac{1}{z}\frac{d}{dz}\right)^n \frac{\cos z}{z}\, ,\\ H^{(1)}_{-n-\frac{1}{2}} (z) &= i (-1)^n H^{(1)}_{n+\frac{1}{2}} (z)\, ,\\ H^{(2)}_{-n-\frac{1}{2}} (z) &= - i (-1)^n H^{(2)}_{n+\frac{1}{2}} (z)\, ,\\ Y_{n+\frac{1}{2}} (z) &= (-1)^{n+1} J_{-n-\frac{1}{2}} (z)\, ,\\ Y_{-n-\frac{1}{2}} (z) &= (-1)^{n+1} J_{n+\frac{1}{2}} (z)\, ,\\ K_{n+\frac{1}{2}} (z) = K_{-n-\frac{1}{2}} (z) &= (-1)^n \sqrt{\frac{2}{\pi}} z^{n+\frac{1}{2}} \left(\frac{1}{z} \frac{d}{dz}\right)^n \frac{e^{-z}}{z}\, . \end{align}
Integral representations
Integer order
When \nu = n\in \mathbb N there are the Bessel's integral representations \begin{align} J_n (z) &= \frac{1}{\pi} \int_0^\pi \cos (z\sin \phi - n \phi)\, d\phi\\ Y_n (z) &= \frac{1}{\pi} \int_0^\pi \cos (z\sin \phi - n \phi)\, d\phi - \frac{2}{\pi} e^{- i n \frac{\pi}{2}} \int_0^\infty e^{-z\sinh t} {\rm cotanh}\, n \left(t + \frac{i\pi}{2}\right)\, dt\, , \qquad {\rm Re}\, z>0\, . \end{align}
General order
For {\rm Re}\, \nu > -\frac{1}{2} and {\rm Re}\, z > 0 there are the Poisson's integral representations \begin{align} J_\nu (z) &= \frac{2 \left(\frac{z}{2}\right)^\nu}{\sqrt{\pi}\, \Gamma \left(\nu + \frac{1}{2}\right)} \int_0^{\frac{\pi}{2}} \cos (z\sin \phi) (\cos \phi)^{2\nu}\, d\phi\, ,\\ I_\nu (z) &= \frac{2 \left(\frac{z}{2}\right)^\nu}{\sqrt{\pi}\, \Gamma \left(\nu + \frac{1}{2}\right)} \int_{-1}^1 e^{-zt} (1-t^2)^{\nu-\frac{1}{2}}\, dt\, ,\\ H^{(k)}_\nu (z) &= (-1)^k i \frac{2 \left(\frac{z}{2}\right)^\nu}{\sqrt{\pi}\, \Gamma \left(\nu + \frac{1}{2}\right)} \int_0^{\frac{\pi}{2}} \frac{(\cos \phi)^{\nu-\frac{1}{2}}}{(\sin \phi)^{2\nu+1}} {\rm exp}\, \left((-1)^{k-1} i \left(z-\nu\pi+\frac{\phi}{2}\right) - 2 z {\rm cotan}\, \phi\right)\, d\phi\, ,\\ K_\nu (z) &= \frac{\sqrt{\pi} \left(\frac{z}{2}\right)^\nu}{\Gamma \left(\nu + \frac{1}{2}\right)} \int_0^\infty e^{-z \cosh t} (\sinh t)^{2\nu}\, dt\, . \end{align} Apart from these there are many other integral representations, in particular in the form of contour integrals (see [AS], [BE] and [GR]).
Asymptotic behaviour
For |z|\ll 1 and \nu = n + \eta with n\in \mathbb N and \eta\in [0,1[ we have \begin{align} J_\nu (z) &\sim \frac{1}{\Gamma (\nu+1)} \left(\frac{z}{2}\right)^\nu\\ J_{-\nu} (z) &\sim (-1)^n \Gamma (\nu) \frac{\sin (\pi \eta)}{\eta} \left(\frac{2}{z}\right)^\nu\, . \end{align} Under the same assumptions for z=x\in \mathbb R: \begin{align} Y_0 (x) &\sim \frac{2}{\pi} \left(\log x + C\right)\\ Y_\nu (x) &\sim -\frac{\Gamma (\nu)}{\pi} \left(\frac{2}{x}\right)^\nu\qquad \qquad n >0\, . \end{align} Next denote by (\nu, m) the Hankel symbol: (\nu, m) = \frac{\Gamma \left(\nu + m + \frac{1}{2}\right)}{m!\Gamma \left(\nu - m + \frac{1}{2}\right)}\, . For |z| \gg \max \{|\nu|^2, 1\} and -\pi < {\rm arg}\, z < \pi we have the following estimates: \begin{align} J_\nu (z) = \sqrt{\frac{2}{\pi z}} \left\{ \cos \left(z-\frac{\nu \pi}{2} - \frac{\pi}{4}\right) \left(\sum_{m=0}^{M-1} (-1)^m \frac{(\nu, 2m)}{(2z)^{2m}} + O \left(|z|^{-2M}\right)\right) - \sin \left(z-\frac{\nu \pi}{2} - \frac{\pi}{4}\right) \left(\sum_{m=0}^{M-1} (-1)^m \frac{(\nu, 2m+1)}{(2z)^{2m+1}} + O \left(|z|^{-2M-1}\right)\right)\right\}\\ Y_\nu (z) = \sqrt{\frac{2}{\pi z}} \left\{ \sin \left(z-\frac{\nu \pi}{2} - \frac{\pi}{4}\right) \left(\sum_{m=0}^{M-1} (-1)^m \frac{(\nu, 2m)}{(2z)^{2m}} + O \left(|z|^{-2M}\right)\right) + \cos \left(z-\frac{\nu \pi}{2} - \frac{\pi}{4}\right) \left(\sum_{m=0}^{M-1} (-1)^m \frac{(\nu, 2m+1)}{(2z)^{2m+1}} + O \left(|z|^{-2M-1}\right)\right)\right\}\, . \end{align} For |z| \gg \max \{|\nu|^2, 1\} and -\pi < {\rm arg}\, z < 2\pi: \begin{equation}\label{e:Hankel_1_as} H^{(1)}_\nu (z) = \sqrt{\frac{2}{\pi z}} e^{-i (z-\frac{\nu\pi}{2} - \frac{\pi}{4})} \left(\sum_{m=0}^{M-1} \frac{(\nu, m)}{(-2iz)^{m}} + O \left(|z|^{-M}\right)\right)\, . \end{equation} For |z| \gg \max \{|\nu|^2, 1\} and -2\pi < {\rm arg}\, z < \pi: \begin{equation}\label{e:Hankel_2_as} H^{(2)}_\nu (z) = \sqrt{\frac{2}{\pi z}} e^{-i (z-\frac{\nu\pi}{2} - \frac{\pi}{4})} \left(\sum_{m=0}^{M-1} \frac{(\nu, m)}{(2iz)^{m}} + O \left(|z|^{-M}\right)\right)\, . \end{equation} For |z| \gg \max \{|\nu|^2, 1\} and -\frac{3\pi}{2} < {\rm arg}\, z < \frac{\pi}{2}: I_\nu (z) = \frac{\cos \nu\pi}{\pi\, \sqrt{2\pi z}} \left\{ \sum_{m=0}^{M-1} \left(e^z - i (-1)^m e^{-i\pi \nu -z}\right) \Gamma \left(m+\frac{1}{2}-\nu\right) \Gamma \left(m+\frac{2}{2}+\nu\right) \frac{(2z)^{-m}}{m!} + e^z O \left(|z|^{-M}\right)\right\}\, . For |z| \gg \max \{|\nu|^2, 1\} and -\frac{3\pi}{2} < {\rm arg}\, z < \frac{3\pi}{2}: K_\nu (z) = \sqrt{\frac{\pi}{2z}} e^{-z} \left(\sum_{m=0}^{M-1} \frac{(\nu,m)}{(2z)^m} + O \left(|z|^{-M}\right)\right)\, . For \nu - \frac{1}{2} = n \in \mathbb N the series \eqref{e:Hankel_1_as} and \eqref{e:Hankel_2_as} terminate. The Hankel functions are the only cylinder functions that tend to 0 for complex values of the variable z as |z|\to\infty (and this is their merit in applications): \begin{align} &\lim_{|z|\to\infty} H^{(1)}_\nu (z) = 0 \qquad 0\leq {\rm arg}\, z\leq \pi\\ &\lim_{|z|\to\infty} H^{(2)}_\nu (z) = 0 \qquad -\pi \leq {\rm arg}\, z\leq 0 \end{align} For large values of |z| and |\nu| (see [AS], [BE], [L] and [Wa]).
Zeros
The zeros of an arbitrary cylinder function are simple except for z=0. If a, b and \nu are real, then between two real zeros of J_\nu lies one real zero of aJ_\nu + bY_\nu. For real \nu, J_\nu has infinitely many real zeros (see Bessel functions for pictures of the graphs of J_0 and J_1) and if \nu \in \mathbb R is larger than -1 all zeros of J_\nu are real.
Still assuming that \nu \in \mathbb R, if 0< j_{\nu,1} < j_{\nu, 2} < \ldots is the ordering of the positive zeros of J_\nu, then we have the following interlacing inequalities: 0 < j_{\nu,1} < j_{\nu+1, 1} < j_{\nu, 2} < j_{\nu+1, 2} < j_{\nu, 3} < \ldots \, . No pairs of functions J_n, J_{m}, J_{n+\frac{1}{2}}, J_{m+\frac{1}{2}} with m>n \in \mathbb N have no common zeros except for the origin. If \nu = - (2n+1) - \eta\, , \qquad n\in \mathbb N\quad \eta\in ]0,1[ then J_\nu has exactly 4n +2 complex (non real) zeros , two of which are pure imaginary; if \nu = - 2n - \eta\, , \qquad n\in \mathbb N\setminus \{0\} \quad \eta\in ]0,1[ then J_\nu has exactly 4n complex (non real) zeros.
Addition theorems
The following addition is due to Neumann. If r_1, r_2, \phi\in \mathbb R with r_2>r_1 and we set R = \sqrt{r_1^2 + r_2^2 - 2 r_1 r_2 \cos \phi}\, , then J_0 (R) = \sum_{m=-\infty}^\infty J_m (r_1) J_m (r_2) e^{i m\phi}\, . The formula generalizes to complex values \nu after introducing the angle \psi, which is related to the unknowns by the formula \sin \psi = \frac{r_1}{R} \sin \phi\, . Then, denoting by Z_\nu an arbitrary cylinder function we have the vectorial identities \begin{align} Z_\nu (R) \left(\begin{array}{l} \cos \nu\psi\\ \sin \nu\psi \end{array}\right) &= \sum_{m=-\infty}^\infty J_m (r_1)\, Z_{\nu+m} (r_2)\, \left(\begin{array}{l} \cos m\phi\\ \sin m\phi \end{array}\right)\, ,\\ I_\nu (R) \left(\begin{array}{l} \cos \nu\psi\\ \sin \nu\psi \end{array}\right) &= \sum_{m=-\infty}^\infty (-1)^m I_m (r_1)\, I_{\nu+m} (r_2)\, \left(\begin{array}{l} \cos m\phi\\ \sin m\phi \end{array}\right)\, ,\\ K_\nu (R) \left(\begin{array}{l} \cos \nu\psi\\ \sin \nu\psi \end{array}\right) &= \sum_{m=-\infty}^\infty (-1)^m I_m (r_1)\, K_{\nu+m} (r_2)\, \left(\begin{array}{l} \cos m\phi\\ \sin m\phi \end{array}\right)\, . \end{align} After introducing the ultraspherical polynomials C^\nu_n (x) = \sum_{k=0}^{\lfloor m/2\rfloor} (-1)^k 2^{m-2k} \frac{\Gamma (\nu+m-k)}{\Gamma (\nu) k! (m-2k)!} x^{m-2k} (which are the n-th coefficient of the power series expansion of y \mapsto (1-2yx + y^2)^{-\nu}) we also have the formulas \begin{align} Z_\nu (R) R^{-\nu} &= 2^\nu \Gamma (\nu) \sum_{m=0}^\infty (\nu+m) \frac{J_{\nu+m} (r_1) Z_{\nu+m} (r_2)}{r_1^\nu r_2^\nu} C_m^\nu (\cos \phi)\, ,\\ I_\nu (R) R^{-\nu} &= 2^\nu \Gamma (\nu) \sum_{m=0}^\infty (-1)^m (\nu+m) \frac{I_{\nu+m} (r_1) I_{\nu+m} (r_2)}{r_1^\nu r_2^\nu} C_m^\nu (\cos \phi)\, ,\\ K_\nu (R) R^{-\nu} &= 2^\nu \Gamma (\nu) \sum_{m=0}^\infty (-1)^m (\nu+m) \frac{I_{\nu+m} (r_1) K_{\nu+m} (r_2)}{r_1^\nu r_2^\nu} C_m^\nu (\cos \phi)\, . \end{align} Indeed the above identitities can be extended to complex values of all the parameters involved, see Chapter XI of [Wa].
In expansions of cylinder functions one uses Lommel polynomials, Neumann series, Fourier–Bessel series, and Dirichlet series.
Relations to spherical functions
Connected with Spherical functions are the Anger functions, the Struve functions, the Lommel functions, as well as the Kelvin functions and the Airy functions.
Cylinder functions can be defined as limit functions of spherical functions in the following way: \begin{align} &\lim_{n\to\infty} P_n \left(\cos \frac{z}{n}\right) = J_0 (z)\\ &\lim_{n\to\infty} n^m P_n^{-m} \left(\cos \frac{x}{n}\right) = J_m (x)\qquad 0<x<\pi\, ,\\ &\lim_{n\to\infty} P_n^{-m} \left(\cosh \frac{z}{n}\right) = I_m (z)\\ &\lim_{n\to\infty} \frac{n^{-m} \sin n\pi}{\sin (m+n)\pi} Q_n^m \left(\cosh \frac{z}{n}\right) = K_m (z)\, . \end{align} Here, asymptotic representations of spherical functions are connected with cylinder functions and vice versa, for example, as in Hilb's formula P_n (\cos \theta) = \sqrt{\frac{\theta}{\sin \theta}} J_0 \left(\left(n+\frac{1}{2}\right)\theta\right) + O \left(n^{-\frac{3}{2}}\right)\, , and in the expansions of Macdonald, Watson, Tricomi, and others (see [BE], [GR], [Wa].
Numerical approximations
For the numerical evaluation of the functions J_0, J_1, Y_0, Y_1, I_0, I_1, K_0, K_1 approximations by polynomials and rational functions are convenient (see [AS]). For expansions with respect to Chebyshev polynomials see [Cl]. For the numerical calculation of functions of large integral order one uses the recurrence relations \eqref{e:rec1} and \eqref{e:rec2} (see [AS]).
Tables
[Bu] | N.M. Burunova, "Mathematical tables" , Moscow (1959) (In Russian) (Completion no. 1) |
[Ch] | E.A. Chistova, "Tables of Bessel functions of a real argument and their integrals" , Moscow (1958) (In Russian) |
[CF] | H.K. Crowder, G.C. Francis, "Tables of spherical Bessel functions and ordinary Bessel functions of order half and odd integer of the first and second kind" , Ballistic Res. Lab. Mem. Rep. 1027 (1956) |
[CF1] | H.K. Crowder, G.C. Francis, Tables of spherical Bessel functions , 1–2 , Nat. Bur. Standards (1947) |
[CF2] | H.K. Crowder, G.C. Francis, Tables of the Bessel functions J_0 (z) and J_1 (z) for complex arguments , Nat. Bur. Standards (1947) |
[CF3] | H.K. Crowder, G.C. Francis, Tables of the Bessel functions Y_0 (z) and Y_1 (z) for complex arguments , Nat. Bur. Standards (1950) |
[CF4] | H.K. Crowder, G.C. Francis, Bessel functions III. Zeros and associated values , Roy. Soc. Math. Tables , 7 , Cambridge Univ. Press (1960) |
[KC] | L.N. Karmazina, E.A. Chistova, "Tables of Bessel functions of an imaginary argument and their integrals" , Moscow (1958) (In Russian) |
[KC2] | L.N. Karmazina, E.A. Chistova, Tables of Bessel functions of fractional order , 1–2 , Nat. Bur. Standards (1948–1949) |
[FMRC] | A.A. Fletcher, J.C.P. Miller, L. Rosenhead, L.J. Comrie, "An index of mathematical tables" , 1–2 , Oxford Univ. Press (1962) |
References
[AS] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973) Chapts. 9–11 |
[BE] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[Cl] | C.W. Clenshaw, "Chebyshev series for mathematical functions" , Math. Tables , 5 , Cambridge Univ. Press (1962) |
[Co] | H. Cohen, "Number theory volume II: analytic and modern tools", Springer (2007) |
[GR] | I.S., Gradshteyn, I.M. Ryzhik, "Table of integrals, series and products", Academic Press (2000) |
[JJ'] | Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004 |
[Le] | N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian) |
[LF] | A.L. Lebedev, R.M. Fedorova, "Handbook of mathematical tables" , Moscow (1956) (In Russian) |
[Wa] | G.N. Watson, "A Treatise on the Theory of Bessel Functions", Cambridge University Press (1922) |
Cylinder functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cylinder_functions&oldid=51813