Difference between revisions of "Chern class"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0220301.png | ||
+ | $#A+1 = 134 n = 1 | ||
+ | $#C+1 = 134 : ~/encyclopedia/old_files/data/C022/C.0202030 Chern class | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Characteristic class|characteristic class]] defined for complex vector bundles. A Chern class of the complex vector bundle | |
+ | over a base B | ||
+ | is denoted by $ c _ {i} ( \xi ) \in H ^ {2i} ( B) $ | ||
+ | and is defined for all natural indices i . | ||
+ | By the complete Chern class is meant the inhomogeneous characteristic class $ 1 + c _ {1} + c _ {2} + \dots $, | ||
+ | and the Chern polynomial is the expression $ c _ {t} = 1 + c _ {1} t + c _ {2} t ^ {2} + \dots $, | ||
+ | where t | ||
+ | is a formal unknown. Chern classes were introduced in [[#References|[1]]]. | ||
− | + | The characteristic classes, defined for all n - | |
+ | dimensional complex vector bundles and with values in the integral cohomology, are naturally identified with the elements of the ring $ H ^ {**} ( \mathop{\rm BU} _ {n} ) $. | ||
+ | In this sense the Chern classes $ c _ {i} $ | ||
+ | can be thought of as elements of the groups H ^ {2i} ( \mathop{\rm BU} _ {n} ) , | ||
+ | the complete Chern class as an element of the ring H ^ {**} ( \mathop{\rm BU} _ {n} ) , | ||
+ | and the Chern polynomial as an element of the formal power series ring H ^ {**} ( \mathop{\rm BU} _ {n} ) [ [ t ] ] . | ||
− | + | The Chern classes satisfy the following properties, which uniquely determine them. 1) For two vector bundles \xi , \eta | |
+ | with a common base B , | ||
+ | $ c ( \xi \oplus \eta ) = c ( \xi ) c ( \eta ) $, | ||
+ | in other words $ c _ {k} ( \xi \oplus \eta ) = \sum _ {i} c _ {i} ( \xi ) c _ {k-} i ( \eta ) $ | ||
+ | where $ c _ {0} = 1 $. | ||
+ | 2) For the one-dimensional universal bundle \kappa _ {1} | ||
+ | over \mathbf C P ^ \infty | ||
+ | the identity $ c ( \kappa _ {1} ) = 1 + u $ | ||
+ | holds, where u \in H ^ {2} ( \mathbf C P ^ \infty ) | ||
+ | is the orientation of \kappa _ {1} ( | ||
+ | \mathbf C P ^ \infty | ||
+ | is the [[Thom space|Thom space]] of \kappa _ {1} , | ||
+ | which, being complex, has a uniquely-defined orientation u ). | ||
− | + | Consequences of the properties 1)–2) are: $ c _ {i} ( \xi ) = 0 $ | |
+ | for $ i > \mathop{\rm dim} \xi $, | ||
+ | and $ c ( \xi ) = c ( \xi \oplus \theta ) $, | ||
+ | where \theta | ||
+ | is the trivial bundle. The latter fact allows one to define Chern classes as elements of the ring H ^ {**} ( \mathop{\rm BU} ) . | ||
− | + | If $ \omega = \{ i _ {1} \dots i _ {k} \} $ | |
+ | is a collection of non-negative integers, then $ c _ \omega $ | ||
+ | denotes the characteristic class $ c _ {i _ {1} } \dots c _ {i _ {k} } \in H ^ {2n} ( \mathop{\rm BU} ) $, | ||
+ | where $ n = i _ {1} + \dots + i _ {k} $. | ||
− | + | Under the natural monomorphism $ H ^ {**} ( \mathop{\rm BU} _ {n} ) \rightarrow H ^ {**} ( \mathop{\rm BT} _ {n} ) = \mathbf Z [ [ x _ {1} \dots x _ {n} ] ] $ | |
+ | induced by the mapping $ \mathop{\rm BT} _ {n} = \mathbf C P ^ \infty \times \dots \times \mathbf C P ^ \infty \rightarrow \mathop{\rm BU} _ {n} $, | ||
+ | the Chern classes are mapped into the elementary symmetric functions, and the complete Chern class is mapped to the polynomial $ \prod _ {i=} 1 ^ {n} ( 1 + x _ {i} ) $. | ||
+ | The image of the ring H ^ {**} ( \mathop{\rm BU} _ {n} ) | ||
+ | in $ H ^ {**} ( \mathop{\rm BT} _ {n} ) = \mathbf Z [ [ x _ {1} \dots x _ {n} ] ] $ | ||
+ | is the subring consisting of all symmetric formal power series. Every symmetric formal power series in the Wu generators x _ {1} \dots x _ {n} | ||
+ | determines a characteristic class that can be expressed in terms of Chern classes. For example, the series $ \prod _ {i=} 1 ^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) $ | ||
+ | determines a characteristic class with rational coefficients, called the Todd class and denoted by T \in H ^ {**} ( \mathop{\rm BU} _ {n} ; \mathbf Q ) . | ||
− | + | Let $ \omega = \{ i _ {1} \dots i _ {k} \} $ | |
+ | be a set of non-negative integers. Let $ S _ \omega ( c _ {1} \dots c _ {n} ) $ | ||
+ | denote the characteristic class defined by the smallest symmetric polynomial in the variables x _ {1} \dots x _ {n} , | ||
+ | where n \geq i _ {1} + \dots + i _ {k} , | ||
+ | containing the monomial x _ {1} ^ {i _ {1} } \dots x _ {k} ^ {i _ {k} } . | ||
− | + | Let h ^ {*} | |
+ | be an oriented multiplicative cohomology theory. Then the Chern classes \sigma _ {i} | ||
+ | with values in h ^ {*} | ||
+ | satisfy, as do ordinary Chern classes, the properties: $ \sigma ( \xi \oplus \eta ) = \sigma ( \xi ) \sigma ( \eta ) $, | ||
+ | $ \sigma = 1 + \sigma _ {1} + \sigma _ {2} + \dots $, | ||
+ | $ \sigma ( \kappa _ {1} ) = 1 + u \in h ^ {*} ( \mathbf C P ^ \infty ) $, | ||
+ | where u \in h ^ {2} ( \mathbf C P ^ \infty ) | ||
+ | is the orientation of the bundle \kappa _ {1} , | ||
+ | and these properties completely determine them. As with ordinary Chern classes, one uses the notation \sigma _ \omega = \sigma _ {i _ {1} } \dots \sigma _ {i _ {k} } | ||
+ | and S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) . | ||
+ | If \xi , \eta | ||
+ | are two complex vector bundles, then | ||
− | + | $$ | |
+ | S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) ( \xi \oplus \eta ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ {\omega ^ \prime \cup \omega ^ {\prime\prime} = \omega } S _ { | ||
+ | \omega ^ \prime } ( \sigma _ {1} \dots \sigma _ {n} ) ( \xi ) S _ {\omega ^ {\prime\prime} } ( \sigma _ {1} \dots \sigma _ {n} ) ( \eta ) , | ||
+ | $$ | ||
− | + | where the summation is taken over all sets $ \omega ^ \prime , \omega ^ {\prime\prime} $ | |
+ | with $ \omega ^ \prime \cup \omega ^ {\prime\prime} = \omega $. | ||
− | + | In place of the theory h ^ {*} | |
+ | one may take a unitary [[Cobordism|cobordism]] theory U ^ {*} | ||
+ | or [[K-theory| K - | ||
+ | theory]]. For a U ^ {*} - | ||
+ | theory the element u \in U ^ {2} ( \mathbf C P ^ \infty ) | ||
+ | is defined by the identity mapping $ \mathbf C P ^ \infty \rightarrow \mathbf C P ^ \infty = \mathop{\rm MU} _ {1} $, | ||
+ | and for K - | ||
+ | theory $ u = \beta ( 1 - [ \overline{x}\; ] ) \in \widetilde{K} {} ^ {2} ( \mathbf C P ^ \infty ) $, | ||
+ | where $ \widetilde \beta : K ^ {0} \rightarrow K ^ {2} $ | ||
+ | is the Bott periodicity operator. The notation \sigma _ {i} | ||
+ | is retained for Chern classes with values in a U ^ {*} - | ||
+ | theory, while Chern classes with values in K - | ||
+ | theory are denoted by \gamma _ {i} . | ||
− | + | According to the general theory, \gamma _ {i} ( \xi ) \in K ^ {2i} ( B) , | |
+ | where \xi | ||
+ | is a vector bundle with base B . | ||
+ | However K - | ||
+ | theory is often conveniently thought of as a \mathbf Z _ {2} - | ||
+ | graded theory, identifying the groups K ^ {n} ( B) | ||
+ | and $ K ^ {n+} 2 ( B) $ | ||
+ | via the periodicity operator \beta . | ||
+ | Then $ K ^ {*} ( B) = K ^ {0} ( B) \oplus K ^ {1} ( B) $ | ||
+ | and $ \gamma ( \xi ) \in K ^ {0} ( B) $ | ||
+ | for all i . | ||
+ | From this point of view it makes sense to consider, instead of the complete Chern class, the Chern polynomial | ||
− | + | $$ | |
+ | \gamma _ {t} ( \xi ) = 1 + \sum _ {i > 0 } | ||
+ | \gamma _ {i} ( \xi ) t ^ {i} \in K ^ {0} ( B) [ t] . | ||
+ | $$ | ||
− | + | Let $ \lambda ^ {i} ( \xi ) = [ \xi \wedge \dots \wedge \xi ] $ | |
+ | be a cohomology operation in K - | ||
+ | theory ( i | ||
+ | terms). The polynomial | ||
− | + | $$ | |
+ | \lambda _ {t} ( \xi ) = \sum _ { i= } 0 ^ \infty | ||
+ | \lambda ^ {i} ( \xi ) t ^ {i} \in K ^ {0} ( B) [ t] | ||
+ | $$ | ||
+ | |||
+ | satisfies, as does \gamma _ {t} , | ||
+ | the multiplicative property | ||
+ | |||
+ | $$ | ||
+ | \lambda _ {t} ( \xi \oplus \eta ) = \ | ||
+ | \lambda _ {t} ( \xi ) \lambda _ {t} ( \eta ) . | ||
+ | $$ | ||
There is the following connection between these polynomials: | There is the following connection between these polynomials: | ||
− | + | $$ | |
+ | |||
+ | \frac{\lambda _ {t} }{1-} | ||
+ | t ( \overline \xi \; - \mathop{\rm dim} \xi ) = 1 + | ||
+ | \sum _ { i= } 1 ^ \infty (- 1) \gamma _ {i} ( \xi ) t ^ {i} = \ | ||
+ | \gamma _ {-} t ( \xi ) . | ||
+ | $$ | ||
− | Here both parts of the equation lie in | + | Here both parts of the equation lie in $ K ^ {0} ( B) [ t] $ |
+ | and \xi | ||
+ | is the trivial bundle of dimension \mathop{\rm dim} \xi . | ||
+ | The classes \gamma _ {i} | ||
+ | in this construction are different from those constructed by M.F. Atiyah, who defined them by the formula $ \gamma _ {t} ( \xi ) = ( \lambda _ {t} / ( 1 - t ) ) ( \xi ) $. | ||
+ | R. Stong [[#References|[2]]] defined classes \gamma _ {i} | ||
+ | that satisfy the condition | ||
− | + | $$ | |
+ | \gamma _ {t} ( \xi ) = | ||
+ | \frac{\lambda _ {t} }{1-} | ||
+ | t | ||
+ | ( \overline \xi \; - \mathop{\rm dim} \xi ) . | ||
+ | $$ | ||
The difference arises because, for Stong, | The difference arises because, for Stong, | ||
− | + | $$ | |
+ | u = \beta ( [ \kappa _ {1} ] - 1 ) \in \ | ||
+ | \widetilde{K} {} ^ {2} ( \mathbf C P ^ \infty ) . | ||
+ | $$ | ||
+ | |||
+ | The classes \sigma _ {i} | ||
+ | are connected with the notion of a Landweber–Novikov algebra, which is very fruitful in homotopy theory. For an arbitrary set $ \omega = \{ i _ {1} \dots i _ {k} \} $ | ||
+ | of non-negative integers, consider the characteristic class S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) \in U ^ {2d} ( \mathop{\rm BU} ) , | ||
+ | where $ d = i _ {1} + \dots + i _ {k} $. | ||
+ | There is a [[Thom isomorphism|Thom isomorphism]] U ^ {2d} ( \mathop{\rm BU} ) \rightarrow \widetilde{U} {} ^ {2d} ( \mathop{\rm MU} ) \subset U ^ {2d} ( \mathop{\rm MU} ) , | ||
+ | where \mathop{\rm MU} | ||
+ | is the spectrum corresponding to the U ^ {*} - | ||
+ | theory. The image of the class S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) | ||
+ | in U ^ {2d} ( \mathop{\rm MU} ) | ||
+ | determines a [[Cohomology operation|cohomology operation]] in the U ^ {*} - | ||
+ | theory. The subalgebra of the [[Steenrod algebra|Steenrod algebra]] in the U ^ {*} - | ||
+ | theory generated by the operations of this form is called the Landweber–Novikov algebra. The operation constructed from the set \omega = \{ i _ {1} \dots i _ {k} \} | ||
+ | is denoted by S _ \omega . | ||
− | + | For one-dimensional bundles $ \xi , \eta $ | |
+ | there is the identity | ||
− | + | $$ | |
+ | c _ {1} ( \xi \otimes \eta ) = c _ {1} ( \xi ) + c _ {1} ( \eta ) . | ||
+ | $$ | ||
− | + | This important property, which enables one to define the [[Chern character|Chern character]], does not hold in generalized cohomology theories. However there exists a formal power series g ( t) | |
+ | with coefficients in h ^ {*} ( \mathop{\rm pt} ) \otimes \mathbf Q , | ||
+ | such that g ( \sigma _ {1} ( \xi \otimes \eta )) = g ( \sigma _ {1} ( \xi ) ) + g ( \sigma _ {1} ( \eta ) ) , | ||
+ | where \sigma _ {1} | ||
+ | is the first Chern class with coefficients in h ^ {*} . | ||
+ | For the unitary cobordism theory | ||
− | + | $$ | |
+ | g ( t) = \sum _ { n= } 0 ^ \infty | ||
− | + | \frac{[ \mathbf C P ^ {n} ] }{n+} | |
+ | 1 t ^ {n+} 1 , | ||
+ | $$ | ||
− | where | + | where $ [ \mathbf C P ^ {n} ] = \Omega _ {u} ^ {*} = U ^ {*} ( \mathop{\rm pt} ) $ |
+ | is the cobordism class of the projective space \mathbf C P ^ {n} . | ||
+ | This series is called the Mishchenko series. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Chern, "Characteristic classes of Hermitian manifolds" ''Ann. of Math.'' , '''47''' : 1 (1946) pp. 85–121 {{MR|0015793}} {{ZBL|0060.41416}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) {{MR|0248858}} {{ZBL|0181.26604}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.S. Palais, "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press (1965) {{MR|0198494}} {{ZBL|0137.17002}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators I" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 484–530 {{MR|0236950}} {{MR|0232402}} {{ZBL|0164.24001}} </TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> M.F. Atiyah, G.B. Segal, "The index of elliptic operators II" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 531–545 {{MR|0236953}} {{MR|0236951}} {{ZBL|0164.24201}} </TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators III" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 546–604 {{MR|0236952}} {{ZBL|0164.24301}} </TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators IV" ''Ann. of Math. (2)'' , '''93''' (1971) pp. 119–138 {{MR|0279833}} {{ZBL|0212.28603}} </TD></TR><TR><TD valign="top">[5e]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators V" ''Ann. of Math. (2)'' , '''93''' (1971) pp. 139–149 {{MR|0279834}} {{ZBL|0212.28603}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) {{MR|1335917}} {{MR|0202713}} {{ZBL|0376.14001}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.M. Bukhshtaber, "The Chern–Dold character in cobordisms" ''Math. USSR-Sb.'' , '''12''' : 4 (1970) pp. 573–594 ''Mat. Sb.'' , '''83''' (1970) pp. 575–595 {{MR|}} {{ZBL|0219.57027}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S.P. Novikov, "The method of algebraic topology from the viewpoint of cobordism theory" ''Math. USSR-Izv.'' , '''4''' : 1 (1967) pp. 827–913 ''Izv. Akad. SSSR Ser. Mat.'' , '''31''' : 4 (1967) pp. 855–951</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c022030127.png" />-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Chern, "Characteristic classes of Hermitian manifolds" ''Ann. of Math.'' , '''47''' : 1 (1946) pp. 85–121 {{MR|0015793}} {{ZBL|0060.41416}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) {{MR|0248858}} {{ZBL|0181.26604}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.S. Palais, "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press (1965) {{MR|0198494}} {{ZBL|0137.17002}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) {{MR|0176478}} {{ZBL|0125.40103}} </TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators I" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 484–530 {{MR|0236950}} {{MR|0232402}} {{ZBL|0164.24001}} </TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> M.F. Atiyah, G.B. Segal, "The index of elliptic operators II" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 531–545 {{MR|0236953}} {{MR|0236951}} {{ZBL|0164.24201}} </TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators III" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 546–604 {{MR|0236952}} {{ZBL|0164.24301}} </TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators IV" ''Ann. of Math. (2)'' , '''93''' (1971) pp. 119–138 {{MR|0279833}} {{ZBL|0212.28603}} </TD></TR><TR><TD valign="top">[5e]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators V" ''Ann. of Math. (2)'' , '''93''' (1971) pp. 139–149 {{MR|0279834}} {{ZBL|0212.28603}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) {{MR|1335917}} {{MR|0202713}} {{ZBL|0376.14001}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) {{MR|0229247}} {{ZBL|0144.44804}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.M. Bukhshtaber, "The Chern–Dold character in cobordisms" ''Math. USSR-Sb.'' , '''12''' : 4 (1970) pp. 573–594 ''Mat. Sb.'' , '''83''' (1970) pp. 575–595 {{MR|}} {{ZBL|0219.57027}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S.P. Novikov, "The method of algebraic topology from the viewpoint of cobordism theory" ''Math. USSR-Izv.'' , '''4''' : 1 (1967) pp. 827–913 ''Izv. Akad. SSSR Ser. Mat.'' , '''31''' : 4 (1967) pp. 855–951</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022030/c022030127.png" />-theory: lectures" , Benjamin (1967) {{MR|224083}} {{ZBL|}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | + | H ^ {**} ( X) | |
+ | denotes the completion $ \prod _ {i \geq 0 } H ^ {i} ( X) $ | ||
+ | of $ H ^ {*} ( X) = \oplus _ {i \geq 0 } H ^ {i} ( X) $. | ||
− | The power series | + | The power series g ( t) \in h ^ {*} ( \mathop{\rm pt} ) \otimes \mathbf Q |
+ | for a complex oriented cohomology theory h ^ {*} | ||
+ | such that $ g ( \sigma _ {1} ( \xi \otimes \eta ) ) = g ( \sigma _ {1} ( \xi ) ) + g ( \sigma _ {1} ( \eta ) ) $ | ||
+ | is the logarithm of the formal group F _ {h} ( X , Y ) | ||
+ | defined by h ^ {*} ; | ||
+ | cf. [[Cobordism|Cobordism]] and [[Formal group|Formal group]] for some more details. |
Revision as of 16:43, 4 June 2020
A characteristic class defined for complex vector bundles. A Chern class of the complex vector bundle \xi
over a base B
is denoted by c _ {i} ( \xi ) \in H ^ {2i} ( B)
and is defined for all natural indices i .
By the complete Chern class is meant the inhomogeneous characteristic class 1 + c _ {1} + c _ {2} + \dots ,
and the Chern polynomial is the expression c _ {t} = 1 + c _ {1} t + c _ {2} t ^ {2} + \dots ,
where t
is a formal unknown. Chern classes were introduced in [1].
The characteristic classes, defined for all n - dimensional complex vector bundles and with values in the integral cohomology, are naturally identified with the elements of the ring H ^ {**} ( \mathop{\rm BU} _ {n} ) . In this sense the Chern classes c _ {i} can be thought of as elements of the groups H ^ {2i} ( \mathop{\rm BU} _ {n} ) , the complete Chern class as an element of the ring H ^ {**} ( \mathop{\rm BU} _ {n} ) , and the Chern polynomial as an element of the formal power series ring H ^ {**} ( \mathop{\rm BU} _ {n} ) [ [ t ] ] .
The Chern classes satisfy the following properties, which uniquely determine them. 1) For two vector bundles \xi , \eta with a common base B , c ( \xi \oplus \eta ) = c ( \xi ) c ( \eta ) , in other words c _ {k} ( \xi \oplus \eta ) = \sum _ {i} c _ {i} ( \xi ) c _ {k-} i ( \eta ) where c _ {0} = 1 . 2) For the one-dimensional universal bundle \kappa _ {1} over \mathbf C P ^ \infty the identity c ( \kappa _ {1} ) = 1 + u holds, where u \in H ^ {2} ( \mathbf C P ^ \infty ) is the orientation of \kappa _ {1} ( \mathbf C P ^ \infty is the Thom space of \kappa _ {1} , which, being complex, has a uniquely-defined orientation u ).
Consequences of the properties 1)–2) are: c _ {i} ( \xi ) = 0 for i > \mathop{\rm dim} \xi , and c ( \xi ) = c ( \xi \oplus \theta ) , where \theta is the trivial bundle. The latter fact allows one to define Chern classes as elements of the ring H ^ {**} ( \mathop{\rm BU} ) .
If \omega = \{ i _ {1} \dots i _ {k} \} is a collection of non-negative integers, then c _ \omega denotes the characteristic class c _ {i _ {1} } \dots c _ {i _ {k} } \in H ^ {2n} ( \mathop{\rm BU} ) , where n = i _ {1} + \dots + i _ {k} .
Under the natural monomorphism H ^ {**} ( \mathop{\rm BU} _ {n} ) \rightarrow H ^ {**} ( \mathop{\rm BT} _ {n} ) = \mathbf Z [ [ x _ {1} \dots x _ {n} ] ] induced by the mapping \mathop{\rm BT} _ {n} = \mathbf C P ^ \infty \times \dots \times \mathbf C P ^ \infty \rightarrow \mathop{\rm BU} _ {n} , the Chern classes are mapped into the elementary symmetric functions, and the complete Chern class is mapped to the polynomial \prod _ {i=} 1 ^ {n} ( 1 + x _ {i} ) . The image of the ring H ^ {**} ( \mathop{\rm BU} _ {n} ) in H ^ {**} ( \mathop{\rm BT} _ {n} ) = \mathbf Z [ [ x _ {1} \dots x _ {n} ] ] is the subring consisting of all symmetric formal power series. Every symmetric formal power series in the Wu generators x _ {1} \dots x _ {n} determines a characteristic class that can be expressed in terms of Chern classes. For example, the series \prod _ {i=} 1 ^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) determines a characteristic class with rational coefficients, called the Todd class and denoted by T \in H ^ {**} ( \mathop{\rm BU} _ {n} ; \mathbf Q ) .
Let \omega = \{ i _ {1} \dots i _ {k} \} be a set of non-negative integers. Let S _ \omega ( c _ {1} \dots c _ {n} ) denote the characteristic class defined by the smallest symmetric polynomial in the variables x _ {1} \dots x _ {n} , where n \geq i _ {1} + \dots + i _ {k} , containing the monomial x _ {1} ^ {i _ {1} } \dots x _ {k} ^ {i _ {k} } .
Let h ^ {*} be an oriented multiplicative cohomology theory. Then the Chern classes \sigma _ {i} with values in h ^ {*} satisfy, as do ordinary Chern classes, the properties: \sigma ( \xi \oplus \eta ) = \sigma ( \xi ) \sigma ( \eta ) , \sigma = 1 + \sigma _ {1} + \sigma _ {2} + \dots , \sigma ( \kappa _ {1} ) = 1 + u \in h ^ {*} ( \mathbf C P ^ \infty ) , where u \in h ^ {2} ( \mathbf C P ^ \infty ) is the orientation of the bundle \kappa _ {1} , and these properties completely determine them. As with ordinary Chern classes, one uses the notation \sigma _ \omega = \sigma _ {i _ {1} } \dots \sigma _ {i _ {k} } and S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) . If \xi , \eta are two complex vector bundles, then
S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) ( \xi \oplus \eta ) =
= \ \sum _ {\omega ^ \prime \cup \omega ^ {\prime\prime} = \omega } S _ { \omega ^ \prime } ( \sigma _ {1} \dots \sigma _ {n} ) ( \xi ) S _ {\omega ^ {\prime\prime} } ( \sigma _ {1} \dots \sigma _ {n} ) ( \eta ) ,
where the summation is taken over all sets \omega ^ \prime , \omega ^ {\prime\prime} with \omega ^ \prime \cup \omega ^ {\prime\prime} = \omega .
In place of the theory h ^ {*} one may take a unitary cobordism theory U ^ {*} or K - theory. For a U ^ {*} - theory the element u \in U ^ {2} ( \mathbf C P ^ \infty ) is defined by the identity mapping \mathbf C P ^ \infty \rightarrow \mathbf C P ^ \infty = \mathop{\rm MU} _ {1} , and for K - theory u = \beta ( 1 - [ \overline{x}\; ] ) \in \widetilde{K} {} ^ {2} ( \mathbf C P ^ \infty ) , where \widetilde \beta : K ^ {0} \rightarrow K ^ {2} is the Bott periodicity operator. The notation \sigma _ {i} is retained for Chern classes with values in a U ^ {*} - theory, while Chern classes with values in K - theory are denoted by \gamma _ {i} .
According to the general theory, \gamma _ {i} ( \xi ) \in K ^ {2i} ( B) , where \xi is a vector bundle with base B . However K - theory is often conveniently thought of as a \mathbf Z _ {2} - graded theory, identifying the groups K ^ {n} ( B) and K ^ {n+} 2 ( B) via the periodicity operator \beta . Then K ^ {*} ( B) = K ^ {0} ( B) \oplus K ^ {1} ( B) and \gamma ( \xi ) \in K ^ {0} ( B) for all i . From this point of view it makes sense to consider, instead of the complete Chern class, the Chern polynomial
\gamma _ {t} ( \xi ) = 1 + \sum _ {i > 0 } \gamma _ {i} ( \xi ) t ^ {i} \in K ^ {0} ( B) [ t] .
Let \lambda ^ {i} ( \xi ) = [ \xi \wedge \dots \wedge \xi ] be a cohomology operation in K - theory ( i terms). The polynomial
\lambda _ {t} ( \xi ) = \sum _ { i= } 0 ^ \infty \lambda ^ {i} ( \xi ) t ^ {i} \in K ^ {0} ( B) [ t]
satisfies, as does \gamma _ {t} , the multiplicative property
\lambda _ {t} ( \xi \oplus \eta ) = \ \lambda _ {t} ( \xi ) \lambda _ {t} ( \eta ) .
There is the following connection between these polynomials:
\frac{\lambda _ {t} }{1-} t ( \overline \xi \; - \mathop{\rm dim} \xi ) = 1 + \sum _ { i= } 1 ^ \infty (- 1) \gamma _ {i} ( \xi ) t ^ {i} = \ \gamma _ {-} t ( \xi ) .
Here both parts of the equation lie in K ^ {0} ( B) [ t] and \xi is the trivial bundle of dimension \mathop{\rm dim} \xi . The classes \gamma _ {i} in this construction are different from those constructed by M.F. Atiyah, who defined them by the formula \gamma _ {t} ( \xi ) = ( \lambda _ {t} / ( 1 - t ) ) ( \xi ) . R. Stong [2] defined classes \gamma _ {i} that satisfy the condition
\gamma _ {t} ( \xi ) = \frac{\lambda _ {t} }{1-} t ( \overline \xi \; - \mathop{\rm dim} \xi ) .
The difference arises because, for Stong,
u = \beta ( [ \kappa _ {1} ] - 1 ) \in \ \widetilde{K} {} ^ {2} ( \mathbf C P ^ \infty ) .
The classes \sigma _ {i} are connected with the notion of a Landweber–Novikov algebra, which is very fruitful in homotopy theory. For an arbitrary set \omega = \{ i _ {1} \dots i _ {k} \} of non-negative integers, consider the characteristic class S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) \in U ^ {2d} ( \mathop{\rm BU} ) , where d = i _ {1} + \dots + i _ {k} . There is a Thom isomorphism U ^ {2d} ( \mathop{\rm BU} ) \rightarrow \widetilde{U} {} ^ {2d} ( \mathop{\rm MU} ) \subset U ^ {2d} ( \mathop{\rm MU} ) , where \mathop{\rm MU} is the spectrum corresponding to the U ^ {*} - theory. The image of the class S _ \omega ( \sigma _ {1} \dots \sigma _ {n} ) in U ^ {2d} ( \mathop{\rm MU} ) determines a cohomology operation in the U ^ {*} - theory. The subalgebra of the Steenrod algebra in the U ^ {*} - theory generated by the operations of this form is called the Landweber–Novikov algebra. The operation constructed from the set \omega = \{ i _ {1} \dots i _ {k} \} is denoted by S _ \omega .
For one-dimensional bundles \xi , \eta there is the identity
c _ {1} ( \xi \otimes \eta ) = c _ {1} ( \xi ) + c _ {1} ( \eta ) .
This important property, which enables one to define the Chern character, does not hold in generalized cohomology theories. However there exists a formal power series g ( t) with coefficients in h ^ {*} ( \mathop{\rm pt} ) \otimes \mathbf Q , such that g ( \sigma _ {1} ( \xi \otimes \eta )) = g ( \sigma _ {1} ( \xi ) ) + g ( \sigma _ {1} ( \eta ) ) , where \sigma _ {1} is the first Chern class with coefficients in h ^ {*} . For the unitary cobordism theory
g ( t) = \sum _ { n= } 0 ^ \infty \frac{[ \mathbf C P ^ {n} ] }{n+} 1 t ^ {n+} 1 ,
where [ \mathbf C P ^ {n} ] = \Omega _ {u} ^ {*} = U ^ {*} ( \mathop{\rm pt} ) is the cobordism class of the projective space \mathbf C P ^ {n} . This series is called the Mishchenko series.
References
[1] | S.S. Chern, "Characteristic classes of Hermitian manifolds" Ann. of Math. , 47 : 1 (1946) pp. 85–121 MR0015793 Zbl 0060.41416 |
[2] | R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) MR0248858 Zbl 0181.26604 |
[3] | R.S. Palais, "Seminar on the Atiyah–Singer index theorem" , Princeton Univ. Press (1965) MR0198494 Zbl 0137.17002 |
[4] | P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) MR0176478 Zbl 0125.40103 |
[5a] | M.F. Atiyah, I.M. Singer, "The index of elliptic operators I" Ann. of Math. (2) , 87 (1968) pp. 484–530 MR0236950 MR0232402 Zbl 0164.24001 |
[5b] | M.F. Atiyah, G.B. Segal, "The index of elliptic operators II" Ann. of Math. (2) , 87 (1968) pp. 531–545 MR0236953 MR0236951 Zbl 0164.24201 |
[5c] | M.F. Atiyah, I.M. Singer, "The index of elliptic operators III" Ann. of Math. (2) , 87 (1968) pp. 546–604 MR0236952 Zbl 0164.24301 |
[5d] | M.F. Atiyah, I.M. Singer, "The index of elliptic operators IV" Ann. of Math. (2) , 93 (1971) pp. 119–138 MR0279833 Zbl 0212.28603 |
[5e] | M.F. Atiyah, I.M. Singer, "The index of elliptic operators V" Ann. of Math. (2) , 93 (1971) pp. 139–149 MR0279834 Zbl 0212.28603 |
[6] | F. Hirzebruch, "Topological methods in algebraic geometry" , Springer (1978) (Translated from German) MR1335917 MR0202713 Zbl 0376.14001 |
[7] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) MR0229247 Zbl 0144.44804 |
[8] | V.M. Bukhshtaber, "The Chern–Dold character in cobordisms" Math. USSR-Sb. , 12 : 4 (1970) pp. 573–594 Mat. Sb. , 83 (1970) pp. 575–595 Zbl 0219.57027 |
[9] | S.P. Novikov, "The method of algebraic topology from the viewpoint of cobordism theory" Math. USSR-Izv. , 4 : 1 (1967) pp. 827–913 Izv. Akad. SSSR Ser. Mat. , 31 : 4 (1967) pp. 855–951 |
[10] | M.F. Atiyah, "![]() |
Comments
H ^ {**} ( X) denotes the completion \prod _ {i \geq 0 } H ^ {i} ( X) of H ^ {*} ( X) = \oplus _ {i \geq 0 } H ^ {i} ( X) .
The power series g ( t) \in h ^ {*} ( \mathop{\rm pt} ) \otimes \mathbf Q for a complex oriented cohomology theory h ^ {*} such that g ( \sigma _ {1} ( \xi \otimes \eta ) ) = g ( \sigma _ {1} ( \xi ) ) + g ( \sigma _ {1} ( \eta ) ) is the logarithm of the formal group F _ {h} ( X , Y ) defined by h ^ {*} ; cf. Cobordism and Formal group for some more details.
Chern class. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chern_class&oldid=23780