Namespaces
Variants
Actions

Difference between revisions of "Modular group algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101801.png" /> be a [[Field|field]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101802.png" /> a [[Group|group]]. The [[Group algebra|group algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101803.png" /> is called modular if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101804.png" /> is prime, say <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101805.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101806.png" /> contains an element of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101807.png" />; otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101808.png" /> is said to be non-modular.
+
<!--
 +
m1101801.png
 +
$#A+1 = 51 n = 0
 +
$#C+1 = 51 : ~/encyclopedia/old_files/data/M110/M.1100180 Modular group algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Practically every result about group algebras over a field of characteristic zero has an appropriate analogue for any non-modular group algebra. Absence of finite skew-fields makes it possible to state certain prime-characteristic analogues in a stronger form. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m1101809.png" /> is a [[Finite group|finite group]], then a non-modular group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018010.png" /> in characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018011.png" /> is a sum of matrix algebras over fields (rather than over skew-fields, as in the case of characteristic zero; cf. also [[Matrix algebra|Matrix algebra]]). The theory of modular group algebras is of a much higher level of complexity than that of the non-modular group algebras. For finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018012.png" />, the topic essentially belongs to the theory of modular representations of finite groups (cf. [[Finite group, representation of a|Finite group, representation of a]]), and includes such rich pieces as the theory of blocks (cf. [[Block|Block]]), Brauer correspondences, the theory of projective and relatively projective modules (cf. [[Projective module|Projective module]]), etc. The radical theory of modular group algebras for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018013.png" /> finite is not very well developed (1996). E.g., there are only fragmentary results about the dimension and the nilpotency index of the radical.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018014.png" /> is infinite, the most studied case is precisely the theory of radicals, mainly the [[Jacobson radical|Jacobson radical]]. The results obtained centre around two conjectures. The first conjecture, proved for locally solvable groups (cf. [[Solvable group|Solvable group]]), states that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018015.png" />, the Jacobson radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018016.png" />, coincides with the so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018018.png" />-radical, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018019.png" /> is defined as the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018021.png" /> is nilpotent (cf. [[Nilpotent group|Nilpotent group]]) for every finitely generated subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018022.png" />. Set
+
Let  $  F $
 +
be a [[Field|field]] and  $  G $
 +
a [[Group|group]]. The [[Group algebra|group algebra]] $  FG $
 +
is called modular if the characteristic of $  F $
 +
is prime, say  $  p $,  
 +
and  $  G $
 +
contains an element of order  $  p $;
 +
otherwise  $  FG $
 +
is said to be non-modular.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018023.png" /></td> </tr></table>
+
Practically every result about group algebras over a field of characteristic zero has an appropriate analogue for any non-modular group algebra. Absence of finite skew-fields makes it possible to state certain prime-characteristic analogues in a stronger form. For example, if  $  G $
 +
is a [[Finite group|finite group]], then a non-modular group algebra  $  FG $
 +
in characteristic  $  p > 0 $
 +
is a sum of matrix algebras over fields (rather than over skew-fields, as in the case of characteristic zero; cf. also [[Matrix algebra|Matrix algebra]]). The theory of modular group algebras is of a much higher level of complexity than that of the non-modular group algebras. For finite  $  G $,
 +
the topic essentially belongs to the theory of modular representations of finite groups (cf. [[Finite group, representation of a|Finite group, representation of a]]), and includes such rich pieces as the theory of blocks (cf. [[Block|Block]]), Brauer correspondences, the theory of projective and relatively projective modules (cf. [[Projective module|Projective module]]), etc. The radical theory of modular group algebras for  $  G $
 +
finite is not very well developed (1996). E.g., there are only fragmentary results about the dimension and the nilpotency index of the radical.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018024.png" /></td> </tr></table>
+
However, if  $  G $
 +
is infinite, the most studied case is precisely the theory of radicals, mainly the [[Jacobson radical|Jacobson radical]]. The results obtained centre around two conjectures. The first conjecture, proved for locally solvable groups (cf. [[Solvable group|Solvable group]]), states that  $  JFG $,
 +
the Jacobson radical of  $  FG $,
 +
coincides with the so-called  $  N  ^ {*} $-
 +
radical, where  $  N  ^ {*} FG $
 +
is defined as the set of all  $  x \in FG $
 +
such that  $  xFH $
 +
is nilpotent (cf. [[Nilpotent group|Nilpotent group]]) for every finitely generated subgroup  $  H \subset  G $.  
 +
Set
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018025.png" /> be the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018026.png" /> generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018027.png" />-elements. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018028.png" /> is locally finite (i.e., every finite set is contained in a finite subgroup) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018029.png" /> is generated by the Jacobson radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018030.png" />. This reduces the problem to locally finite groups.
+
$$
 +
\Lambda  ^ {+} = \{ {g \in G } : \left | {H: C _ {H} ( g ) } \right | < \infty
 +
$$
  
The second conjecture concerns locally finite groups and has recently been settled affirmatively by D.S. Passman [[#References|[a2]]]. To state it, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018031.png" /> be the maximal normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018032.png" />-subgroup of the [[Locally finite group|locally finite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018033.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018034.png" /> be the subgroup generated by all finite subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018035.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018036.png" /> is generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018037.png" />-elements and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018038.png" /> is a [[Subnormal subgroup|subnormal subgroup]] in every finite subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018039.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018040.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018041.png" /> be the pre-image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018042.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018043.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018044.png" /> is generated (as an [[Ideal|ideal]]) by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018046.png" /> is easily described in terms of radicals of the group rings of finite groups. Thus, the problem is in fact reduced to the case of finite groups, which is usually regarded as a satisfactory solution for a problem in the theory of infinite groups.
+
$$
 +
\
 +
{} \textrm{ for  all  finitely  generated subgroups }  H \subset  G \}
 +
$$
  
For a locally finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018047.png" />, the two-sided ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018048.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018050.png" /> can be described in terms of the representations of finite subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018051.png" />, [[#References|[a3]]]. This also provides an efficient machinery for studying the lattice of two-sided ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018052.png" />.
+
and let  $  \Lambda  ^ {p} ( G ) $
 +
be the subgroup of  $  \Lambda  ^ {+} $
 +
generated by the  $  p $-
 +
elements. Then  $  \Lambda  ^ {+} $
 +
is locally finite (i.e., every finite set is contained in a finite subgroup) and  $  N  ^ {*} FG $
 +
is generated by the Jacobson radical of  $  F \Lambda  ^ {p} ( G ) $.
 +
This reduces the problem to locally finite groups.
 +
 
 +
The second conjecture concerns locally finite groups and has recently been settled affirmatively by D.S. Passman [[#References|[a2]]]. To state it, let  $  O _ {p} ( G ) $
 +
be the maximal normal  $  p $-
 +
subgroup of the [[Locally finite group|locally finite group]]  $  G $
 +
and let  $  S ( G ) $
 +
be the subgroup generated by all finite subgroups  $  A \subset  G $
 +
such that  $  A $
 +
is generated by  $  p $-
 +
elements and  $  A $
 +
is a [[Subnormal subgroup|subnormal subgroup]] in every finite subgroup  $  B \subset  G $
 +
with  $  A \subset  B $.  
 +
Let  $  T ( G ) $
 +
be the pre-image of  $  S ( G/O _ {p} ( G ) ) $
 +
in  $  G $.  
 +
Then  $  JFG $
 +
is generated (as an [[Ideal|ideal]]) by  $  JFT ( G ) $,
 +
and  $  JFT ( G ) $
 +
is easily described in terms of radicals of the group rings of finite groups. Thus, the problem is in fact reduced to the case of finite groups, which is usually regarded as a satisfactory solution for a problem in the theory of infinite groups.
 +
 
 +
For a locally finite  $  G $,
 +
the two-sided ideals  $  I $
 +
of  $  FG $
 +
such that $  J ( FG/I ) = 0 $
 +
can be described in terms of the representations of finite subgroups of $  G $,  
 +
[[#References|[a3]]]. This also provides an efficient machinery for studying the lattice of two-sided ideals of $  FG $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.S. Passman,  "The algebraic structure of group rings" , Wiley  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.S. Passman,  "The Jacobson radical of group rings of locally finite groups"  ''Adv. in Math.''  (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.E. Zalessskii,  "Group rings of simple locally finite groups" , ''Finite and Locally Finite Groups'' , Kluwer Acad. Publ.  (1995)  pp. 219–246</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.S. Passman,  "The algebraic structure of group rings" , Wiley  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D.S. Passman,  "The Jacobson radical of group rings of locally finite groups"  ''Adv. in Math.''  (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.E. Zalessskii,  "Group rings of simple locally finite groups" , ''Finite and Locally Finite Groups'' , Kluwer Acad. Publ.  (1995)  pp. 219–246</TD></TR></table>

Latest revision as of 08:01, 6 June 2020


Let $ F $ be a field and $ G $ a group. The group algebra $ FG $ is called modular if the characteristic of $ F $ is prime, say $ p $, and $ G $ contains an element of order $ p $; otherwise $ FG $ is said to be non-modular.

Practically every result about group algebras over a field of characteristic zero has an appropriate analogue for any non-modular group algebra. Absence of finite skew-fields makes it possible to state certain prime-characteristic analogues in a stronger form. For example, if $ G $ is a finite group, then a non-modular group algebra $ FG $ in characteristic $ p > 0 $ is a sum of matrix algebras over fields (rather than over skew-fields, as in the case of characteristic zero; cf. also Matrix algebra). The theory of modular group algebras is of a much higher level of complexity than that of the non-modular group algebras. For finite $ G $, the topic essentially belongs to the theory of modular representations of finite groups (cf. Finite group, representation of a), and includes such rich pieces as the theory of blocks (cf. Block), Brauer correspondences, the theory of projective and relatively projective modules (cf. Projective module), etc. The radical theory of modular group algebras for $ G $ finite is not very well developed (1996). E.g., there are only fragmentary results about the dimension and the nilpotency index of the radical.

However, if $ G $ is infinite, the most studied case is precisely the theory of radicals, mainly the Jacobson radical. The results obtained centre around two conjectures. The first conjecture, proved for locally solvable groups (cf. Solvable group), states that $ JFG $, the Jacobson radical of $ FG $, coincides with the so-called $ N ^ {*} $- radical, where $ N ^ {*} FG $ is defined as the set of all $ x \in FG $ such that $ xFH $ is nilpotent (cf. Nilpotent group) for every finitely generated subgroup $ H \subset G $. Set

$$ \Lambda ^ {+} = \{ {g \in G } : \left | {H: C _ {H} ( g ) } \right | < \infty $$

$$ \ {} \textrm{ for all finitely generated subgroups } H \subset G \} $$

and let $ \Lambda ^ {p} ( G ) $ be the subgroup of $ \Lambda ^ {+} $ generated by the $ p $- elements. Then $ \Lambda ^ {+} $ is locally finite (i.e., every finite set is contained in a finite subgroup) and $ N ^ {*} FG $ is generated by the Jacobson radical of $ F \Lambda ^ {p} ( G ) $. This reduces the problem to locally finite groups.

The second conjecture concerns locally finite groups and has recently been settled affirmatively by D.S. Passman [a2]. To state it, let $ O _ {p} ( G ) $ be the maximal normal $ p $- subgroup of the locally finite group $ G $ and let $ S ( G ) $ be the subgroup generated by all finite subgroups $ A \subset G $ such that $ A $ is generated by $ p $- elements and $ A $ is a subnormal subgroup in every finite subgroup $ B \subset G $ with $ A \subset B $. Let $ T ( G ) $ be the pre-image of $ S ( G/O _ {p} ( G ) ) $ in $ G $. Then $ JFG $ is generated (as an ideal) by $ JFT ( G ) $, and $ JFT ( G ) $ is easily described in terms of radicals of the group rings of finite groups. Thus, the problem is in fact reduced to the case of finite groups, which is usually regarded as a satisfactory solution for a problem in the theory of infinite groups.

For a locally finite $ G $, the two-sided ideals $ I $ of $ FG $ such that $ J ( FG/I ) = 0 $ can be described in terms of the representations of finite subgroups of $ G $, [a3]. This also provides an efficient machinery for studying the lattice of two-sided ideals of $ FG $.

References

[a1] D.S. Passman, "The algebraic structure of group rings" , Wiley (1977)
[a2] D.S. Passman, "The Jacobson radical of group rings of locally finite groups" Adv. in Math. (to appear)
[a3] A.E. Zalessskii, "Group rings of simple locally finite groups" , Finite and Locally Finite Groups , Kluwer Acad. Publ. (1995) pp. 219–246
How to Cite This Entry:
Modular group algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modular_group_algebra&oldid=14524
This article was adapted from an original article by A.E. Zalesskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article