Namespaces
Variants
Actions

Difference between revisions of "Disconjugacy"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (AUTOMATIC EDIT (latexlist): Replaced 1 formulas out of 1 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
<!--
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
d1102201.png
+
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
$#A+1 = 61 n = 1
+
was used.
$#C+1 = 61 : ~/encyclopedia/old_files/data/D110/D.1100220 Disconcugacy
+
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
 +
Out of 1 formulas, 1 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
Line 26: Line 25:
 
cf. also [[Oscillating solution|Oscillating solution]]; [[Oscillating differential equation|Oscillating differential equation]].) If (a1) has a solution with  $  n $
 
cf. also [[Oscillating solution|Oscillating solution]]; [[Oscillating differential equation|Oscillating differential equation]].) If (a1) has a solution with  $  n $
 
zeros on an interval, then the infimum of all values  $  c $,  
 
zeros on an interval, then the infimum of all values  $  c $,  
$  c > a $,  
+
$  c &gt; a $,  
 
such that some solution has  $  n $
 
such that some solution has  $  n $
 
zeros on  $  [ a,c ] $
 
zeros on  $  [ a,c ] $
Line 42: Line 41:
  
 
$$  
 
$$  
\sum ^ {n _ {k}  = 1 } c _ {k} ( b - a )  ^ {k} \left \| {p _ {k} } \right \| < 1,
+
\sum ^ {n _ {k}  = 1 } c _ {k} ( b - a )  ^ {k} \left \| {p _ {k} } \right \| &lt; 1,
 
$$
 
$$
  
Line 63: Line 62:
 
  } \left ( \rho _ {1} {
 
  } \left ( \rho _ {1} {
 
\frac{d}{dx }
 
\frac{d}{dx }
  } ( \rho _ {0} y ) \right ) \dots \right ) ,  \rho _ {i} > 0,
+
  } ( \rho _ {0} y ) \right ) \dots \right ) ,  \rho _ {i} &gt; 0,
 
$$
 
$$
  
Line 92: Line 91:
 
{
 
{
 
\frac{G ( x,t ) }{( x - x _ {1} ) ^ {r _ {1} } \dots ( x - x _ {m} ) ^ {r _ {m} } }
 
\frac{G ( x,t ) }{( x - x _ {1} ) ^ {r _ {1} } \dots ( x - x _ {m} ) ^ {r _ {m} } }
  } > 0
+
  } &gt; 0
 
$$
 
$$
  
 
for  $  x _ {1} \leq  x \leq  x _ {m} $,  
 
for  $  x _ {1} \leq  x \leq  x _ {m} $,  
$  x _ {1} < t < x _ {m} $[[#References|[a7]]]. Another interesting boundary value problem is the focal boundary value problem  $  y ^ {( i ) } ( x _ {j} ) = 0 $,  
+
$  x _ {1} &lt; t &lt; x _ {m} $[[#References|[a7]]]. Another interesting boundary value problem is the focal boundary value problem  $  y ^ {( i ) } ( x _ {j} ) = 0 $,  
 
$  i = r _ {j - 1 }  \dots r _ {j} - 1 $,  
 
$  i = r _ {j - 1 }  \dots r _ {j} - 1 $,  
 
$  j = 1 \dots m $,  
 
$  j = 1 \dots m $,  
$  0 = r _ {0} < r _ {1} < \dots < r _ {m} = n - 1 $.
+
$  0 = r _ {0} &lt; r _ {1} &lt; \dots &lt; r _ {m} = n - 1 $.
  
 
For a second-order equation, the Sturm separation theorem (cf. [[Sturm theorem|Sturm theorem]]) yields that non-oscillation (i.e., no solution has a sequence of zeros converging to  $  + \infty $)  
 
For a second-order equation, the Sturm separation theorem (cf. [[Sturm theorem|Sturm theorem]]) yields that non-oscillation (i.e., no solution has a sequence of zeros converging to  $  + \infty $)  
 
implies that there exists a point  $  a $
 
implies that there exists a point  $  a $
 
such that (a1) is disconjugate on  $  [ a, \infty ) $.  
 
such that (a1) is disconjugate on  $  [ a, \infty ) $.  
For equations of order  $  n > 2 $
+
For equations of order  $  n &gt; 2 $
 
this conclusion holds for a class of equations [[#References|[a2]]] but not for all equations [[#References|[a4]]].
 
this conclusion holds for a class of equations [[#References|[a2]]] but not for all equations [[#References|[a4]]].
  
Line 112: Line 111:
  
 
$$ \tag{a2 }
 
$$ \tag{a2 }
( p y  ^  \prime  )  ^  \prime  + q y = 0,  p > 0,
+
( p y  ^  \prime  )  ^  \prime  + q y = 0,  p &gt; 0,
 
$$
 
$$
  
Line 118: Line 117:
 
It is also closely related to the positive definiteness of the quadratic functional  $  \int _ {a}  ^ {b} {( p y ^ {\prime 2 } - q y  ^ {2} ) } $.  
 
It is also closely related to the positive definiteness of the quadratic functional  $  \int _ {a}  ^ {b} {( p y ^ {\prime 2 } - q y  ^ {2} ) } $.  
 
See [[#References|[a10]]], [[#References|[a1]]], [[#References|[a5]]]. For example, (a2) is disconjugate on  $  [ a,b ] $
 
See [[#References|[a10]]], [[#References|[a1]]], [[#References|[a5]]]. For example, (a2) is disconjugate on  $  [ a,b ] $
if  $  \int _ {a}  ^ {b} {p ^ {- 1 } } \times \int _ {a}  ^ {b} {| q | } < 4 $.
+
if  $  \int _ {a}  ^ {b} {p ^ {- 1 } } \times \int _ {a}  ^ {b} {| q | } &lt; 4 $.
  
 
2) Third-order equations are studied in [[#References|[a3]]].
 
2) Third-order equations are studied in [[#References|[a3]]].
Line 136: Line 135:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W.A. Coppel,  "Disconjugacy" , ''Lecture Notes in Mathematics'' , '''220''' , Springer  (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  U. Elias,  "Oscillation theory of two-term differential equations" , Kluwer Acad. Publ.  (1997)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Gregus,  "Third order linear differential equations" , Reidel  (1987)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Gustafson, G. B.,  "The nonequivalence of oscillation and nondisconjugacy"  ''Proc. Amer. Math. Soc.'' , '''25'''  (1970)  pp. 254–260</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  E. Hille,  "Lectures on ordinary differential equations" , Addison-Wesley  (1968)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  I.T. Kiguradze,  T.A. Chanturia,  "Asymptotic properties of solutions of nonautonomous ordinary differential equations" , Kluwer Acad. Publ.  (1993)  (In Russian)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A.Yu. Levin,  "Non-oscillation of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022063.png" />"  ''Russian Math. Surveys'' , '''24'''  (1969)  pp. 43–99  (In Russian)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  Z. Nehari,  "The Schwarzian derivative and schlicht functions"  ''Bull. Amer. Math. Soc.'' , '''55'''  (1949)  pp. 545–551</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  W.T. Reid,  "Sturmian theory for ordinary differential equations" , Springer  (1980)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillatory theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  W.F. Trench,  "Canonical forms and principal systems for general disconjugate equation"  ''Trans. Amer. Math. Soc.'' , '''189'''  (1974)  pp. 319–327</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  D. Willet,  "Generalized de la Vallée Poussin disconjugacy tests for linear differential equations"  ''Canadian Math. Bull.'' , '''14'''  (1971)  pp. 419–428</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  W.A. Coppel,  "Disconjugacy" , ''Lecture Notes in Mathematics'' , '''220''' , Springer  (1971)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  U. Elias,  "Oscillation theory of two-term differential equations" , Kluwer Acad. Publ.  (1997)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  M. Gregus,  "Third order linear differential equations" , Reidel  (1987)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  Gustafson, G. B.,  "The nonequivalence of oscillation and nondisconjugacy"  ''Proc. Amer. Math. Soc.'' , '''25'''  (1970)  pp. 254–260</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  E. Hille,  "Lectures on ordinary differential equations" , Addison-Wesley  (1968)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  I.T. Kiguradze,  T.A. Chanturia,  "Asymptotic properties of solutions of nonautonomous ordinary differential equations" , Kluwer Acad. Publ.  (1993)  (In Russian)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  A.Yu. Levin,  "Non-oscillation of solutions of the equation $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$"  ''Russian Math. Surveys'' , '''24'''  (1969)  pp. 43–99  (In Russian)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  Z. Nehari,  "The Schwarzian derivative and schlicht functions"  ''Bull. Amer. Math. Soc.'' , '''55'''  (1949)  pp. 545–551</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  W.T. Reid,  "Sturmian theory for ordinary differential equations" , Springer  (1980)</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  C.A. Swanson,  "Comparison and oscillatory theory of linear differential equations" , Acad. Press  (1968)</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  W.F. Trench,  "Canonical forms and principal systems for general disconjugate equation"  ''Trans. Amer. Math. Soc.'' , '''189'''  (1974)  pp. 319–327</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  D. Willet,  "Generalized de la Vallée Poussin disconjugacy tests for linear differential equations"  ''Canadian Math. Bull.'' , '''14'''  (1971)  pp. 419–428</td></tr></table>

Revision as of 16:52, 1 July 2020


2020 Mathematics Subject Classification: Primary: 34L [MSN][ZBL]

An $ n $ th order homogeneous linear differential operator (equation)

$$ \tag{a1 } Ly \equiv y ^ {( n ) } + p _ {1} ( x ) y ^ {( n - 1 ) } + \dots + p _ {n} ( x ) y = 0 $$

is called disconjugate on an interval $ I $ if no non-trivial solution has $ n $ zeros on $ I $, multiple zeros being counted according to their multiplicity. (In the Russian literature this is called non-oscillation on $ I $; cf. also Oscillating solution; Oscillating differential equation.) If (a1) has a solution with $ n $ zeros on an interval, then the infimum of all values $ c $, $ c > a $, such that some solution has $ n $ zeros on $ [ a,c ] $ is called the conjugate point of $ a $ and is denoted by $ \eta ( a ) $. This infimum is achieved by a solution which has a total of at least $ n $ zeros at $ a $ and $ \eta ( a ) $ and is positive on $ ( a, \eta ( a ) ) $. If the equation has continuous coefficients, the conjugate point $ \eta ( a ) $ is a strictly increasing, continuous function of $ a $. The adjoint equation has the same conjugate point as (a1). For general properties, see [a1], [a7].

There are numerous explicit sufficient criteria for the equation (a1) to be disconjugate. Many of them are of the form

$$ \sum ^ {n _ {k} = 1 } c _ {k} ( b - a ) ^ {k} \left \| {p _ {k} } \right \| < 1, $$

where $ \| {p _ {k} } \| $ is some norm of $ p _ {k} $, $ I = [ a,b ] $ and $ c _ {k} $ are suitable constants. These are "smallness conditions" which express the proximity of (a1) to the disconjugate equation $ y ^ {( n ) } = 0 $. See [a12].

$ L $ is disconjugate on $ [ a,b ] $ if and only if it has there the Pólya factorization

$$ Ly \equiv \rho _ {n} { \frac{d}{dx } } \left ( \rho _ {n - 1 } \dots { \frac{d}{dx } } \left ( \rho _ {1} { \frac{d}{dx } } ( \rho _ {0} y ) \right ) \dots \right ) , \rho _ {i} > 0, $$

or the equivalent Mammana factorization

$$ Ly = \left ( { \frac{d}{dx } } + r _ {n} \right ) \dots \left ( { \frac{d}{dx } } + r _ {1} \right ) y. $$

Among the various Pólya factorizations, the most important is the Trench canonical form [a11]: If $ L $ is disconjugate on $ ( a,b ) $, $ b \leq \infty $, then there is essentially one factorization such that $ \int ^ {b} {\rho _ {i} ^ {- 1 } } = \infty $, $ i = 1 \dots n - 1 $.

Disconjugacy is closely related to solvability of the de la Vallée-Poussin multiple-point problem $ Ly = g $, $ y ^ {( i ) } ( x _ {j} ) = a _ {ij } $, $ i = 0 \dots r _ {j} - 1 $, $ \sum _ {1} ^ {m} r _ {j} = n $. The Green's function of a disconjugate operator $ L $ and the related homogeneous boundary value problem satisfies

$$ { \frac{G ( x,t ) }{( x - x _ {1} ) ^ {r _ {1} } \dots ( x - x _ {m} ) ^ {r _ {m} } } } > 0 $$

for $ x _ {1} \leq x \leq x _ {m} $, $ x _ {1} < t < x _ {m} $[a7]. Another interesting boundary value problem is the focal boundary value problem $ y ^ {( i ) } ( x _ {j} ) = 0 $, $ i = r _ {j - 1 } \dots r _ {j} - 1 $, $ j = 1 \dots m $, $ 0 = r _ {0} < r _ {1} < \dots < r _ {m} = n - 1 $.

For a second-order equation, the Sturm separation theorem (cf. Sturm theorem) yields that non-oscillation (i.e., no solution has a sequence of zeros converging to $ + \infty $) implies that there exists a point $ a $ such that (a1) is disconjugate on $ [ a, \infty ) $. For equations of order $ n > 2 $ this conclusion holds for a class of equations [a2] but not for all equations [a4].

Particular results about disconjugacy exist for various special types of differential equations.

1) The Sturm–Liouville operator (cf. Sturm–Liouville equation)

$$ \tag{a2 } ( p y ^ \prime ) ^ \prime + q y = 0, p > 0, $$

has been studied using the Sturm (and Sturm–Picone) comparison theorem, the Prüfer transformation and the Riccati equation $ z ^ \prime + q + { {z ^ {2} } / p } = 0 $. It is also closely related to the positive definiteness of the quadratic functional $ \int _ {a} ^ {b} {( p y ^ {\prime 2 } - q y ^ {2} ) } $. See [a10], [a1], [a5]. For example, (a2) is disconjugate on $ [ a,b ] $ if $ \int _ {a} ^ {b} {p ^ {- 1 } } \times \int _ {a} ^ {b} {| q | } < 4 $.

2) Third-order equations are studied in [a3].

3) For a self-adjoint differential equation $ \sum _ {i = 0 } ^ {m} ( p _ {m - i } y ^ {( i ) } ) ^ {( i ) } = 0 $, the existence of a solution with two zeros of multiplicity $ m $ has been studied. Their absence is called $ ( m,m ) $- disconjugacy.

4) Disconjugacy of the analytic equation $ w ^ \prime + p ( z ) w = 0 $ in a complex domain is connected to the theory of univalent functions. See [a8], [a5] and Univalent function.

5) Many particularly elegant result are available for two-term equations $ y ^ {( n ) } + p ( x ) y = 0 $ and their generalizations $ Ly + p ( x ) y = 0 $[a6], [a2].

Disconjugacy has also been studied for certain second-order linear differential systems of higher dimension [a1], [a9]. In the historical prologue of [a9], the connection to the calculus of variations (cf. also Variational calculus) is explained. The concepts of disconjugacy and oscillation have also been generalized to non-linear differential equations and functional-differential equations.

References

[a1] W.A. Coppel, "Disconjugacy" , Lecture Notes in Mathematics , 220 , Springer (1971)
[a2] U. Elias, "Oscillation theory of two-term differential equations" , Kluwer Acad. Publ. (1997)
[a3] M. Gregus, "Third order linear differential equations" , Reidel (1987)
[a4] Gustafson, G. B., "The nonequivalence of oscillation and nondisconjugacy" Proc. Amer. Math. Soc. , 25 (1970) pp. 254–260
[a5] E. Hille, "Lectures on ordinary differential equations" , Addison-Wesley (1968)
[a6] I.T. Kiguradze, T.A. Chanturia, "Asymptotic properties of solutions of nonautonomous ordinary differential equations" , Kluwer Acad. Publ. (1993) (In Russian)
[a7] A.Yu. Levin, "Non-oscillation of solutions of the equation $x ^ { ( n ) } + p _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + p _ { n } ( t ) x = 0$" Russian Math. Surveys , 24 (1969) pp. 43–99 (In Russian)
[a8] Z. Nehari, "The Schwarzian derivative and schlicht functions" Bull. Amer. Math. Soc. , 55 (1949) pp. 545–551
[a9] W.T. Reid, "Sturmian theory for ordinary differential equations" , Springer (1980)
[a10] C.A. Swanson, "Comparison and oscillatory theory of linear differential equations" , Acad. Press (1968)
[a11] W.F. Trench, "Canonical forms and principal systems for general disconjugate equation" Trans. Amer. Math. Soc. , 189 (1974) pp. 319–327
[a12] D. Willet, "Generalized de la Vallée Poussin disconjugacy tests for linear differential equations" Canadian Math. Bull. , 14 (1971) pp. 419–428
How to Cite This Entry:
Disconjugacy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Disconjugacy&oldid=46727
This article was adapted from an original article by U. Elias (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article