Difference between revisions of "Hopf order"
(→References: Underwood (2011)) |
m (isbn) |
||
Line 1: | Line 1: | ||
− | Let | + | Let $K$ be a finite extension of the $p$-adic rationals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102803.png" /> endowed with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102804.png" />-adic valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102805.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102806.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102807.png" /> be its ring of integers (cf. [[Extension of a field|Extension of a field]]; [[Norm on a field|Norm on a field]]; [[P-adic number|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102808.png" />-adic number]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h1102809.png" /> be the group ring of a [[Finite group|finite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028010.png" /> (cf. also [[Group algebra|Group algebra]]; [[Cross product|Cross product]]), with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028011.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028013.png" />-Hopf order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028014.png" /> is a rank-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028015.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028016.png" />-Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028017.png" /> (cf. [[Hopf algebra|Hopf algebra]]) satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028018.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028019.png" />-Hopf algebras. |
There is a method [[#References|[a2]]] for constructing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028020.png" />-Hopf orders in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028021.png" /> using so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028022.png" />-adic order-bounded group valuations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028023.png" />. Given a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028024.png" />-adic order-bounded group valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028025.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028026.png" /> be an element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028027.png" /> of value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028028.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028029.png" />-Hopf order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028030.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028031.png" /> (called a Larson order) is of the form | There is a method [[#References|[a2]]] for constructing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028020.png" />-Hopf orders in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028021.png" /> using so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028022.png" />-adic order-bounded group valuations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028023.png" />. Given a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028024.png" />-adic order-bounded group valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028025.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028026.png" /> be an element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028027.png" /> of value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028028.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028029.png" />-Hopf order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028030.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110280/h11028031.png" /> (called a Larson order) is of the form | ||
Line 47: | Line 47: | ||
<TR><TD valign="top">[a5]</TD> <TD valign="top"> R.G. Underwood, "The valuative condition and $R$-Hopf algebra orders in $KC_{p^3}$" ''Amer. J. Math. (4)'' , '''118''' (1996) pp. 701–743 {{ZBL|0857.16039}}</TD></TR> | <TR><TD valign="top">[a5]</TD> <TD valign="top"> R.G. Underwood, "The valuative condition and $R$-Hopf algebra orders in $KC_{p^3}$" ''Amer. J. Math. (4)'' , '''118''' (1996) pp. 701–743 {{ZBL|0857.16039}}</TD></TR> | ||
− | <TR><TD valign="top">[b1]</TD> <TD valign="top"> R.G. Underwood, "An Introduction to Hopf Algebras" Springer (2011) ISBN 978-0-387-72765-3 {{ZBL|1234.16022}}</TD></TR> | + | <TR><TD valign="top">[b1]</TD> <TD valign="top"> R.G. Underwood, "An Introduction to Hopf Algebras" Springer (2011) {{ISBN|978-0-387-72765-3}} {{ZBL|1234.16022}}</TD></TR> |
</table> | </table> | ||
+ | |||
+ | {{TEX|want}} |
Revision as of 08:51, 12 November 2023
Let $K$ be a finite extension of the $p$-adic rationals endowed with the -adic valuation with and let be its ring of integers (cf. Extension of a field; Norm on a field; -adic number). Let be the group ring of a finite group (cf. also Group algebra; Cross product), with . An -Hopf order in is a rank- -Hopf algebra (cf. Hopf algebra) satisfying as -Hopf algebras.
There is a method [a2] for constructing -Hopf orders in using so-called -adic order-bounded group valuations on . Given a -adic order-bounded group valuation , let be an element in of value . Then the -Hopf order in determined by (called a Larson order) is of the form
For Abelian (cf. Abelian group), the classification of -Hopf orders in is reduced to the case where is a -group. Specifically, one takes , cyclic of order , and assumes that contains a primitive th root of unity, denoted by . In this case, a -adic order-bounded group valuation on is determined by its values for , , and the Larson order is denoted by
It is known [a3] that every -Hopf order in can be written as a Tate–Oort algebra , which in turn can be expressed as the Larson order
Thus, every -Hopf order in is Larson. For this is not the case, though every -Hopf order does contain a maximal Larson order [a2].
For there exists a large class of -Hopf orders in (called Greither orders), of the form
, where and are values from a -adic order-bounded group valuation on and is an element in the Larson order (see [a1]). The parameter is an element in the units group , where is the ramification index of in , and . If , then the Greither order is the Larson order ; moreover, if and only if .
Since , the linear dual of the -Hopf order in is an -Hopf order in . One has
and
where , (see [a5]). It is known [a4] that an arbitrary -Hopf order in is either a Greither order or the linear dual of a Greither order. Thus, every -Hopf order in can be written in the form
for some , , .
The construction of Greither orders can be generalized to give a complete classification of -Hopf orders in , as well as a class of -Hopf orders in , , which are not Larson (see [a5]). However, the complete classification of -Hopf orders in , , remains an open problem.
See also Hopf orders, applications of.
References
[a1] | C. Greither, "Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring" Math. Z. , 210 (1992) pp. 37–67 Zbl 0737.11038 |
[a2] | R.G. Larson, "Hopf algebra orders determined by group valuations" J. Algebra , 38 (1976) pp. 414–452 Zbl 0407.20007 |
[a3] | J. Tate, F. Oort, "Group schemes of prime order" Ann. Sci. Ecole Norm. Super. (4) , 3 (1970) |
[a4] | R.G. Underwood, "$R$-Hopf algebra orders in $KC_{p^2}$" J. Algebra , 169 (1994},) pp. 418–440 Zbl 0820.16036 |
[a5] | R.G. Underwood, "The valuative condition and $R$-Hopf algebra orders in $KC_{p^3}$" Amer. J. Math. (4) , 118 (1996) pp. 701–743 Zbl 0857.16039 |
[b1] | R.G. Underwood, "An Introduction to Hopf Algebras" Springer (2011) ISBN 978-0-387-72765-3 Zbl 1234.16022 |
Hopf order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hopf_order&oldid=54380