Difference between revisions of "Gâteaux differential"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(gather refs) |
||
Line 54: | Line 54: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.I. [V.I. Sobolev] Sobolew, "Elemente der Funktionalanalysis" , H. Deutsch , Frankfurt a.M. (1979) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> W.I. [V.I. Sobolev] Sobolew, "Elemente der Funktionalanalysis" , H. Deutsch , Frankfurt a.M. (1979) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M.S. Berger, "Nonlinearity and functional analysis" , Acad. Press (1977)</TD></TR> | |
− | + | </table> | |
− | |||
− |
Latest revision as of 14:29, 15 April 2023
of a mapping $ f $
of a linear topological space $ X $
into a linear topological space $ Y $
The function
$$ h \rightarrow Df ( x _ {0} , h), $$
where
$$ Df ( x _ {0} , h) = \left . \frac{d}{dt } f ( x _ {0} + th) \right | _ {t = 0 } = $$
$$ = \ \lim\limits _ {t \rightarrow 0 } \frac{f ( x _ {0} + th) - f ( x _ {0} ) }{t} , $$
on the assumption that the limit exists for all $ h \in X $, the convergence being understood in the topology of $ Y $. The Gâteaux differential thus defined is homogeneous, but is not additive. Gâteaux differentials of higher orders are defined in a similar manner. The mapping $ h \rightarrow Df( x _ {0} , h) $ is sometimes known as the Gâteaux variation or as the weak differential. See also Differentiation of a mapping; Variation.
Linearity and continuity are usually additionally stipulated: $ Df( x, h) = f _ {G} ^ { \prime } ( x _ {0} ) h $, $ f _ {G} ^ { \prime } ( x _ {0} ) \in L( X, Y) $. In such a case $ f _ {G} ^ { \prime } ( x _ {0} ) $ is known as the Gâteaux derivative. If the mapping $ ( x, h) \rightarrow Df( x, h) $ is uniformly continuous in $ x $ and continuous in $ h $ in some domain, then the Fréchet derivative $ f ^ { \prime } $ of $ f $ exists in this domain and $ f ^ { \prime } ( x) h = Df ( x, h ) $.
References
[1] | W.I. [V.I. Sobolev] Sobolew, "Elemente der Funktionalanalysis" , H. Deutsch , Frankfurt a.M. (1979) (Translated from Russian) |
[2] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[a1] | M.S. Berger, "Nonlinearity and functional analysis" , Acad. Press (1977) |
Gâteaux differential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=G%C3%A2teaux_differential&oldid=53803