Difference between revisions of "Davenport constant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d1100101.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/D110/D.1100010 Davenport constant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | For a finite [[Abelian group|Abelian group]] $ G $, | |
+ | Davenport's constant $ D ( G ) $ | ||
+ | of $ G $ | ||
+ | is the smallest positive integer $ d $ | ||
+ | such that for any sequence $ S = ( g _ {1} \dots g _ {d} ) $ | ||
+ | of not necessarily distinct elements of $ G $ | ||
+ | there is a non-empty subsequence $ S ^ \prime \subseteq S $ | ||
+ | with sum zero (i.e., there is some $ \emptyset \neq I \subseteq \{ 1 \dots d \} $ | ||
+ | with $ \sum _ {i \in I } g _ {i} = 0 $). | ||
− | + | It is reported in [[#References|[a7]]] that in 1966 H. Davenport proposed the problem of finding $ D ( G ) $ | |
+ | in the following connection. Let $ K $ | ||
+ | be an algebraic number field (cf. also [[Algebraic number|Algebraic number]]; [[Field|Field]]) with ring of integers $ R $ | ||
+ | and ideal class group $ G $. | ||
+ | Then $ D ( G ) $ | ||
+ | is the maximal number of prime ideals (counted with multiplicity) which can divide an irreducible element of $ R $. | ||
+ | This is the reason why $ D ( G ) $ | ||
+ | is a crucial invariant in the theory of non-unique factorizations [[#References|[a2]]]. | ||
− | + | Let $ C _ {n} $ | |
+ | denote the [[Cyclic group|cyclic group]] with $ n $ | ||
+ | elements and suppose $ G = C _ {n _ {1} } \oplus \dots \oplus C _ {n _ {r} } $ | ||
+ | with $ 1 < n _ {1} | \dots | n _ {r} $ | ||
+ | and with rank $ r ( G ) = r $. | ||
+ | Then | ||
− | The problem of determining | + | $$ |
+ | 1 + \sum _ {i = 1 } ^ { r } ( n _ {i} - 1 ) \leq D ( G ) \leq n _ {r} \left ( 1 + { \mathop{\rm log} } { | ||
+ | \frac{\left | G \right | }{n _ {r} } | ||
+ | } \right ) . | ||
+ | $$ | ||
+ | |||
+ | In the left-hand inequality, equality holds for $ p $- | ||
+ | groups and for groups $ G $ | ||
+ | with $ r ( G ) \leq 2 $( | ||
+ | proved independently by J.E. Olson [[#References|[a7]]] and D. Kruyswijk [[#References|[a3]]]; cf. also [[P-group| $ p $- | ||
+ | group]]). However, the left-hand inequality can be strict [[#References|[a4]]], [[#References|[a5]]]. For the right-hand inequality, cf. [[#References|[a6]]]. It is still (1996) an open question whether the left-hand inequality can be strict for groups of rank $ 3 $ | ||
+ | or for groups of the form $ G = C _ {n} ^ {r} $. | ||
+ | |||
+ | The problem of determining $ D ( G ) $ | ||
+ | belongs to the area of zero-sum sequences, a subfield of [[Additive number theory|additive number theory]], respectively additive [[Group|group]] theory. For related problems cf. [[#References|[a1]]] and the literature cited there. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Alon, M. Dubiner, "Zero-sum sets of prescribed size" D. Miklós (ed.) V.T. Sós (ed.) T. Szönyi (ed.) , ''Combinatorics, Paul Erdös is Eighty'' , ''Bolyai Society Mathematical Studies'' , '''1''' , Keszthely (Hungary) (1993) pp. 33–50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Chapman, "On the Davenport's constant, the cross number and their application in factorization theory" , ''Lecture Notes in Pure and Appl. Math.'' , '''171''' , M. Dekker (1995) pp. 167–190</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. van Emde Boas, D. Kruyswijk, "A combinatorial problem on finite abelian groups III" ''Report Math. Centre'' , '''ZW–1969–008''' (1969)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Geroldinger, R. Schneider, "On Davenport's constant" ''J. Combin. Th. A'' , '''61''' (1992) pp. 147–152</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Mazur, "A note on the growth of Davenport's constant" ''Manuscr. Math.'' , '''74''' (1992) pp. 229–235</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Meshulam, "An uncertainty inequality and zero subsums" ''Discrete Math.'' , '''84''' (1990) pp. 197–200</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J.E. Olson, "A combinatorial problem on finite abelian groups I–II" ''J. Number Th.'' , '''1''' (1969) pp. 8–10; 195–199</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Alon, M. Dubiner, "Zero-sum sets of prescribed size" D. Miklós (ed.) V.T. Sós (ed.) T. Szönyi (ed.) , ''Combinatorics, Paul Erdös is Eighty'' , ''Bolyai Society Mathematical Studies'' , '''1''' , Keszthely (Hungary) (1993) pp. 33–50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Chapman, "On the Davenport's constant, the cross number and their application in factorization theory" , ''Lecture Notes in Pure and Appl. Math.'' , '''171''' , M. Dekker (1995) pp. 167–190</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. van Emde Boas, D. Kruyswijk, "A combinatorial problem on finite abelian groups III" ''Report Math. Centre'' , '''ZW–1969–008''' (1969)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Geroldinger, R. Schneider, "On Davenport's constant" ''J. Combin. Th. A'' , '''61''' (1992) pp. 147–152</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Mazur, "A note on the growth of Davenport's constant" ''Manuscr. Math.'' , '''74''' (1992) pp. 229–235</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Meshulam, "An uncertainty inequality and zero subsums" ''Discrete Math.'' , '''84''' (1990) pp. 197–200</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J.E. Olson, "A combinatorial problem on finite abelian groups I–II" ''J. Number Th.'' , '''1''' (1969) pp. 8–10; 195–199</TD></TR></table> |
Latest revision as of 17:32, 5 June 2020
For a finite Abelian group $ G $,
Davenport's constant $ D ( G ) $
of $ G $
is the smallest positive integer $ d $
such that for any sequence $ S = ( g _ {1} \dots g _ {d} ) $
of not necessarily distinct elements of $ G $
there is a non-empty subsequence $ S ^ \prime \subseteq S $
with sum zero (i.e., there is some $ \emptyset \neq I \subseteq \{ 1 \dots d \} $
with $ \sum _ {i \in I } g _ {i} = 0 $).
It is reported in [a7] that in 1966 H. Davenport proposed the problem of finding $ D ( G ) $ in the following connection. Let $ K $ be an algebraic number field (cf. also Algebraic number; Field) with ring of integers $ R $ and ideal class group $ G $. Then $ D ( G ) $ is the maximal number of prime ideals (counted with multiplicity) which can divide an irreducible element of $ R $. This is the reason why $ D ( G ) $ is a crucial invariant in the theory of non-unique factorizations [a2].
Let $ C _ {n} $ denote the cyclic group with $ n $ elements and suppose $ G = C _ {n _ {1} } \oplus \dots \oplus C _ {n _ {r} } $ with $ 1 < n _ {1} | \dots | n _ {r} $ and with rank $ r ( G ) = r $. Then
$$ 1 + \sum _ {i = 1 } ^ { r } ( n _ {i} - 1 ) \leq D ( G ) \leq n _ {r} \left ( 1 + { \mathop{\rm log} } { \frac{\left | G \right | }{n _ {r} } } \right ) . $$
In the left-hand inequality, equality holds for $ p $- groups and for groups $ G $ with $ r ( G ) \leq 2 $( proved independently by J.E. Olson [a7] and D. Kruyswijk [a3]; cf. also $ p $- group). However, the left-hand inequality can be strict [a4], [a5]. For the right-hand inequality, cf. [a6]. It is still (1996) an open question whether the left-hand inequality can be strict for groups of rank $ 3 $ or for groups of the form $ G = C _ {n} ^ {r} $.
The problem of determining $ D ( G ) $ belongs to the area of zero-sum sequences, a subfield of additive number theory, respectively additive group theory. For related problems cf. [a1] and the literature cited there.
References
[a1] | N. Alon, M. Dubiner, "Zero-sum sets of prescribed size" D. Miklós (ed.) V.T. Sós (ed.) T. Szönyi (ed.) , Combinatorics, Paul Erdös is Eighty , Bolyai Society Mathematical Studies , 1 , Keszthely (Hungary) (1993) pp. 33–50 |
[a2] | S. Chapman, "On the Davenport's constant, the cross number and their application in factorization theory" , Lecture Notes in Pure and Appl. Math. , 171 , M. Dekker (1995) pp. 167–190 |
[a3] | P. van Emde Boas, D. Kruyswijk, "A combinatorial problem on finite abelian groups III" Report Math. Centre , ZW–1969–008 (1969) |
[a4] | A. Geroldinger, R. Schneider, "On Davenport's constant" J. Combin. Th. A , 61 (1992) pp. 147–152 |
[a5] | M. Mazur, "A note on the growth of Davenport's constant" Manuscr. Math. , 74 (1992) pp. 229–235 |
[a6] | R. Meshulam, "An uncertainty inequality and zero subsums" Discrete Math. , 84 (1990) pp. 197–200 |
[a7] | J.E. Olson, "A combinatorial problem on finite abelian groups I–II" J. Number Th. , 1 (1969) pp. 8–10; 195–199 |
Davenport constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Davenport_constant&oldid=46585