Namespaces
Variants
Actions

Difference between revisions of "Leibniz-Hopf algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(TeX partially done)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101001.png" /> be the [[Free associative algebra|free associative algebra]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101002.png" /> over the integers. Give <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101003.png" /> a [[Hopf algebra|Hopf algebra]] structure by means of the following co-multiplication, augmentation, and antipode:
+
Let $\mathbf{Z}\langle Z \rangle$ be the [[free associative algebra]] on $Z = \{Z-1,Z_2,\ldots\}$ over the integers. Give $\mathbf{Z}\langle Z \rangle$ a [[Hopf algebra]] structure by means of the following co-multiplication, augmentation, and antipode:
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101004.png" /></td> </tr></table>
+
\mu(Z_n) = \sum_{i+j=n\,;\,\,i,j \ge 0} Z_i \otimes Z_j
 
+
$$
 
where
 
where
 +
$$
 +
Z_0 = 1
 +
$$
 +
$$
 +
\epsilon(Z_n) = 0,\ \ n=1,2,\ldots
 +
$$
 +
$$
 +
\iota(Z_n) = \sum_{i_1+\cdots+i_k = n} (-1)^k Z_{i_1} \cdots Z_{i_k} \ ,
 +
$$
 +
where the sum is over all strings $i_1,\ldots,i_k$, $i_j \ge 1$, such that $i_1+\cdots+i_k = n$. This makes $\mathbf{Z}\langle Z \rangle$ a Hopf algebra, called the Leibniz–Hopf algebra. This Hopf algebra is important, e.g., in the theory of curves of non-commutative formal groups (see [[Formal group]]) [[#References|[a1]]], [[#References|[a2]]], [[#References|[a5]]]. Its commutative quotient $\mathbf{Z}[Z]$, with the same co-multiplication, is the underlying Hopf algebra of the (big) Witt vector functor $R \mapsto W(R)$ (see [[Witt vector]]) and it plays an important role in the classification theory of unipotent commutative algebraic groups and in the theory of commutative formal groups (amongst other things) [[#References|[a3]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101005.png" /></td> </tr></table>
+
The Leibniz–Hopf algebra $\mathbf{Z}\langle Z \rangle$ is free as a $\mathbf{Z}$-module and graded. Its graded dual is also a Hopf algebra, whose underlying algebra is the overlapping shuffle algebra $\mathrm{OSh}(\mathbf{N})$. As a $\mathbf Z$-module, $\mathrm{OSh}(\mathbf{N})$ is free with basis $\mathbf{N}^*$, the free monoid (see [[Free semi-group]]) of all words in the alphabet $\mathbf{N}$ with the duality pairing $\mathbf{Z}\langle Z \rangle \times \mathrm{OSh}(\mathbf{N}) \rightarrow \mathbf{Z}$ given by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101006.png" /></td> </tr></table>
+
\left({ w , Z_{i_1}\cdots Z_{i_r} }\right) = \begin{cases}1,& w = i_1\cdots i_r ,\\ 0 &\text{otherwise}.\end{cases}
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101007.png" /></td> </tr></table>
 
 
 
where the sum is over all strings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101008.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l1101009.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010010.png" />. This makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010011.png" /> a Hopf algebra, called the Leibniz–Hopf algebra. This Hopf algebra is important, e.g., in the theory of curves of non-commutative formal groups (see [[Formal group|Formal group]]) [[#References|[a1]]], [[#References|[a2]]], [[#References|[a5]]]. Its commutative quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010012.png" />, with the same co-multiplication, is the underlying Hopf algebra of the (big) Witt vector functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010013.png" /> (see [[Witt vector|Witt vector]]) and it plays an important role in the classification theory of unipotent commutative algebraic groups and in the theory of commutative formal groups (amongst other things) [[#References|[a3]]].
 
 
 
The Leibniz–Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010014.png" /> is free as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010015.png" />-module and graded. Its graded dual is also a Hopf algebra, whose underlying algebra is the overlapping shuffle algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010016.png" />. As a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010017.png" />-module, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010018.png" /> is free with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010019.png" />, the free monoid (see [[Free semi-group|Free semi-group]]) of all words in the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010020.png" /> with the duality pairing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010021.png" /> given by
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010022.png" /></td> </tr></table>
 
  
 
The overlapping shuffle product of two such words <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010024.png" /> is equal to
 
The overlapping shuffle product of two such words <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010024.png" /> is equal to
Line 39: Line 42:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.J. Ditters, "Curves and formal (co)groups" ''Invent. Math.'' , '''17''' (1972) pp. 1–20</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.J. Ditters, "Groupes formels" , ''Lecture Notes'' , Univ. Paris XI: Orsay (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) {{MR|0506881}} {{MR|0463184}} {{ZBL|0454.14020}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Hazewinkel, "The Leibniz Hopf algebra and Lyndon words" ''Preprint AM CWI'' , '''9612''' (1996)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.C.J. Scholtens, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010046.png" />-Typical curves in non-commutative Hopf algebras" , Free Univ. Amsterdam (1996) (Thesis)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.J. Ditters, "Curves and formal (co)groups" ''Invent. Math.'' , '''17''' (1972) pp. 1–20</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.J. Ditters, "Groupes formels" , ''Lecture Notes'' , Univ. Paris XI: Orsay (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) {{MR|0506881}} {{MR|0463184}} {{ZBL|0454.14020}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Hazewinkel, "The Leibniz Hopf algebra and Lyndon words" ''Preprint AM CWI'' , '''9612''' (1996)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.C.J. Scholtens, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110100/l11010046.png" />-Typical curves in non-commutative Hopf algebras" , Free Univ. Amsterdam (1996) (Thesis)</TD></TR></table>
 +
 +
[[Category:TeX partially done]]

Revision as of 20:44, 29 November 2015

Let $\mathbf{Z}\langle Z \rangle$ be the free associative algebra on $Z = \{Z-1,Z_2,\ldots\}$ over the integers. Give $\mathbf{Z}\langle Z \rangle$ a Hopf algebra structure by means of the following co-multiplication, augmentation, and antipode: $$ \mu(Z_n) = \sum_{i+j=n\,;\,\,i,j \ge 0} Z_i \otimes Z_j $$ where $$ Z_0 = 1 $$ $$ \epsilon(Z_n) = 0,\ \ n=1,2,\ldots $$ $$ \iota(Z_n) = \sum_{i_1+\cdots+i_k = n} (-1)^k Z_{i_1} \cdots Z_{i_k} \ , $$ where the sum is over all strings $i_1,\ldots,i_k$, $i_j \ge 1$, such that $i_1+\cdots+i_k = n$. This makes $\mathbf{Z}\langle Z \rangle$ a Hopf algebra, called the Leibniz–Hopf algebra. This Hopf algebra is important, e.g., in the theory of curves of non-commutative formal groups (see Formal group) [a1], [a2], [a5]. Its commutative quotient $\mathbf{Z}[Z]$, with the same co-multiplication, is the underlying Hopf algebra of the (big) Witt vector functor $R \mapsto W(R)$ (see Witt vector) and it plays an important role in the classification theory of unipotent commutative algebraic groups and in the theory of commutative formal groups (amongst other things) [a3].

The Leibniz–Hopf algebra $\mathbf{Z}\langle Z \rangle$ is free as a $\mathbf{Z}$-module and graded. Its graded dual is also a Hopf algebra, whose underlying algebra is the overlapping shuffle algebra $\mathrm{OSh}(\mathbf{N})$. As a $\mathbf Z$-module, $\mathrm{OSh}(\mathbf{N})$ is free with basis $\mathbf{N}^*$, the free monoid (see Free semi-group) of all words in the alphabet $\mathbf{N}$ with the duality pairing $\mathbf{Z}\langle Z \rangle \times \mathrm{OSh}(\mathbf{N}) \rightarrow \mathbf{Z}$ given by $$ \left({ w , Z_{i_1}\cdots Z_{i_r} }\right) = \begin{cases}1,& w = i_1\cdots i_r ,\\ 0 &\text{otherwise}.\end{cases} $$

The overlapping shuffle product of two such words , is equal to

where the sum is over all and pairs of order-preserving injective mappings , such that , and where

with if , and similarly for .

For example,

The terms of maximal length of the overlapping shuffle product form the shuffle product, see Shuffle algebra.

A word , , is elementary if the greatest common divisor of is . With this terminology, the Ditters–Scholtens theorem [a4], [a5] says that, as an algebra over , the overlapping shuffle algebra is the free commutative polynomial algebra with as generators the elementary concatenation powers of elementary Lyndon words (see Lyndon word). (E.g., the third concatenation power of is .) In contrast with the case of the shuffle algebra, this theorem already holds over (not just over ).

References

[a1] E.J. Ditters, "Curves and formal (co)groups" Invent. Math. , 17 (1972) pp. 1–20
[a2] E.J. Ditters, "Groupes formels" , Lecture Notes , Univ. Paris XI: Orsay (1974)
[a3] M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) MR0506881 MR0463184 Zbl 0454.14020
[a4] M. Hazewinkel, "The Leibniz Hopf algebra and Lyndon words" Preprint AM CWI , 9612 (1996)
[a5] A.C.J. Scholtens, "-Typical curves in non-commutative Hopf algebras" , Free Univ. Amsterdam (1996) (Thesis)
How to Cite This Entry:
Leibniz-Hopf algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz-Hopf_algebra&oldid=36839
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article