Difference between revisions of "Steenrod reduced power"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
(One intermediate revision by the same user not shown) | |||
Line 19: | Line 19: | ||
$$ | $$ | ||
− | {\mathcal P} ^ {i} : H ^ {n} ( X, Y; \mathbf Z _ {p} ) \rightarrow H ^ {n+} | + | {\mathcal P} ^ {i} : H ^ {n} ( X, Y; \mathbf Z _ {p} ) \rightarrow H ^ {n+2i}( p- 1) ( X, Y; \mathbf Z _ {p} ), |
$$ | $$ | ||
Line 26: | Line 26: | ||
The Steenrod reduced powers possess the following properties (apart from naturality $ f ^ { * } {\mathcal P} ^ {i} = {\mathcal P} ^ {i} f ^ { * } $ | The Steenrod reduced powers possess the following properties (apart from naturality $ f ^ { * } {\mathcal P} ^ {i} = {\mathcal P} ^ {i} f ^ { * } $ | ||
and stability $ \delta {\mathcal P} ^ {i} = {\mathcal P} ^ {i} \delta $, | and stability $ \delta {\mathcal P} ^ {i} = {\mathcal P} ^ {i} \delta $, | ||
− | where $ \delta : H ^ {q} ( Y; \mathbf Z _ {p} ) \rightarrow H ^ {q+} | + | where $ \delta : H ^ {q} ( Y; \mathbf Z _ {p} ) \rightarrow H ^ {q+1} ( X, Y; \mathbf Z _ {p} ) $ |
is the coboundary homomorphism): | is the coboundary homomorphism): | ||
Line 37: | Line 37: | ||
then $ {\mathcal P} ^ {i} x = 0 $; | then $ {\mathcal P} ^ {i} x = 0 $; | ||
− | 4) (Cartan's formula) $ {\mathcal P} ^ {i} ( x, y) = \ | + | 4) (Cartan's formula) $ {\mathcal P} ^ {i} ( x, y) = \sum_{j=0}^ {i} ( {\mathcal P} ^ {i} x) \cdot ( {\mathcal P} ^ {i-j} x) $; |
5) (Adem's relation) | 5) (Adem's relation) | ||
$$ | $$ | ||
− | {\mathcal P} ^ {a} {\mathcal P} ^ {b} = \ | + | {\mathcal P} ^ {a} {\mathcal P} ^ {b} = \sum_{t=0}^ { [v/p]} (- 1) ^ {a+t} \left ( \begin{array}{c} |
( p- 1)( b- t)- 1 \\ | ( p- 1)( b- t)- 1 \\ | ||
a- pt | a- pt | ||
\end{array} | \end{array} | ||
− | \right ) _ {p} {\mathcal P} ^ {a+ | + | \right ) _ {p} {\mathcal P} ^ {a+b-t} |
$$ | $$ | ||
Line 53: | Line 53: | ||
$$ | $$ | ||
{\mathcal P} ^ {a} \beta {\mathcal P} ^ {b} = \ | {\mathcal P} ^ {a} \beta {\mathcal P} ^ {b} = \ | ||
− | \ | + | \sum_{t=0}^ { [ } a/p] (- 1) ^ {a+t} \left ( \begin{array}{c} |
( p- 1)( b- t) \\ | ( p- 1)( b- t) \\ | ||
a- pt | a- pt | ||
\end{array} | \end{array} | ||
\right | \right | ||
− | ) _ {p} \beta {\mathcal P} ^ {a+ | + | ) _ {p} \beta {\mathcal P} ^ {a+b-t} {\mathcal P} ^ {t} + |
$$ | $$ | ||
$$ | $$ | ||
+ | + | ||
− | \ | + | \sum_{t=0}^ { [(a- 1)/p]}(- 1) ^ {a+t-1} \left ( |
\begin{array}{c} | \begin{array}{c} | ||
( p- 1)( b- t)- 1 \\ | ( p- 1)( b- t)- 1 \\ | ||
a- pt- 1 | a- pt- 1 | ||
\end{array} | \end{array} | ||
− | \right ) _ {p} {\mathcal P} ^ {a+ | + | \right ) _ {p} {\mathcal P} ^ {a+b-t} \beta {\mathcal P} ^ {t} |
$$ | $$ | ||
Latest revision as of 19:54, 18 January 2024
A stable cohomology operation $ {\mathcal P} ^ {i} $,
$ i \geq 0 $,
of the type $ ( \mathbf Z _ {p} , \mathbf Z _ {p} ) $,
where $ p $
is a fixed odd prime number, which is the analogue modulo $ p $
of the Steenrod square, and which is a homomorphism
$$ {\mathcal P} ^ {i} : H ^ {n} ( X, Y; \mathbf Z _ {p} ) \rightarrow H ^ {n+2i}( p- 1) ( X, Y; \mathbf Z _ {p} ), $$
defined for every pair of topological spaces $ ( X, Y) $ and any integer $ n $. The Steenrod reduced powers possess the following properties (apart from naturality $ f ^ { * } {\mathcal P} ^ {i} = {\mathcal P} ^ {i} f ^ { * } $ and stability $ \delta {\mathcal P} ^ {i} = {\mathcal P} ^ {i} \delta $, where $ \delta : H ^ {q} ( Y; \mathbf Z _ {p} ) \rightarrow H ^ {q+1} ( X, Y; \mathbf Z _ {p} ) $ is the coboundary homomorphism):
1) $ {\mathcal P} ^ {0} = \mathop{\rm id} $;
2) if $ 2i = \mathop{\rm dim} x $, then $ {\mathcal P} ^ {i} x = x ^ {p} $;
3) if $ 2i > \mathop{\rm dim} x $, then $ {\mathcal P} ^ {i} x = 0 $;
4) (Cartan's formula) $ {\mathcal P} ^ {i} ( x, y) = \sum_{j=0}^ {i} ( {\mathcal P} ^ {i} x) \cdot ( {\mathcal P} ^ {i-j} x) $;
5) (Adem's relation)
$$ {\mathcal P} ^ {a} {\mathcal P} ^ {b} = \sum_{t=0}^ { [v/p]} (- 1) ^ {a+t} \left ( \begin{array}{c} ( p- 1)( b- t)- 1 \\ a- pt \end{array} \right ) _ {p} {\mathcal P} ^ {a+b-t} $$
if $ a < pb $,
$$ {\mathcal P} ^ {a} \beta {\mathcal P} ^ {b} = \ \sum_{t=0}^ { [ } a/p] (- 1) ^ {a+t} \left ( \begin{array}{c} ( p- 1)( b- t) \\ a- pt \end{array} \right ) _ {p} \beta {\mathcal P} ^ {a+b-t} {\mathcal P} ^ {t} + $$
$$ + \sum_{t=0}^ { [(a- 1)/p]}(- 1) ^ {a+t-1} \left ( \begin{array}{c} ( p- 1)( b- t)- 1 \\ a- pt- 1 \end{array} \right ) _ {p} {\mathcal P} ^ {a+b-t} \beta {\mathcal P} ^ {t} $$
if $ a \leq pb $, where $ \beta $ is the Bockstein homomorphism associated with the short exact sequence of coefficient groups $ 0 \rightarrow \mathbf Z _ {p} \rightarrow \mathbf Z _ {p ^ {2} } \rightarrow \mathbf Z _ {p} \rightarrow 0 $, while $ ( \cdot ) _ {p} $ are the binomial coefficients reduced modulo $ p $.
These properties are analogous to the corresponding properties of Steenrod squares, whereby the operation $ Sq ^ {2i} $ corresponds to the operation $ {\mathcal P} ^ {i} $. Just as for Steenrod squares, the multiplication in 4) can be considered to be both exterior ( $ \times $- multiplication) and interior ( $ \cup $- multiplication). Steenrod reduced powers commute with suspension and transgression.
The properties 1)–3) uniquely characterize $ {\mathcal P} ^ {i} $, and can be constructed in the same way as Steenrod squares using the minimal acyclic free chain $ \mathbf Z _ {p} $- complex $ W $.
References
[1] | N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962) |
[2] | Matematika , 5 : 2 (1961) pp. 3–11; 11–30; 30–49; 50–102 |
Comments
For more references see Steenrod algebra.
Steenrod reduced power. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steenrod_reduced_power&oldid=48826