|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A [[Group|group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868501.png" /> generated by proper subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868502.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868503.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868504.png" /> normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868505.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868506.png" /> (so that the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868507.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868508.png" />, cf. [[Normal subgroup|Normal subgroup]]). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s0868509.png" /> is called a split extension of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685010.png" /> by the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685011.png" />, or a semi-direct product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685013.png" />. If the subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685015.png" /> commute elementwise, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685016.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685018.png" />, their semi-direct product coincides with the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685019.png" />. A semi-direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685020.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685021.png" /> and a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685022.png" /> is given by a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685024.png" /> into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685025.png" /> of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685026.png" />. In this case, the formula
| + | <!-- |
| + | s0868501.png |
| + | $#A+1 = 47 n = 0 |
| + | $#C+1 = 47 : ~/encyclopedia/old_files/data/S086/S.0806850 Splittable group |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685027.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685029.png" />, defines the multiplication in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685030.png" />. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685032.png" /> is the identity mapping, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685033.png" /> is called the holomorph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685034.png" /> (cf. [[Holomorph of a group|Holomorph of a group]]).
| + | A [[Group|group]] $ G $ |
| + | generated by proper subgroups $ H $ |
| + | and $ K $ |
| + | with $ H $ |
| + | normal in $ G $ |
| + | and $ H \cap K = E $( |
| + | so that the quotient group $ G/H $ |
| + | is isomorphic to $ K $, |
| + | cf. [[Normal subgroup|Normal subgroup]]). $ G $ |
| + | is called a split extension of the group $ H $ |
| + | by the group $ K $, |
| + | or a semi-direct product of $ H $ |
| + | and $ K $. |
| + | If the subgroups $ H $ |
| + | and $ K $ |
| + | commute elementwise, i.e. $ hk = kh $ |
| + | for all $ h \in H $, |
| + | $ k \in K $, |
| + | their semi-direct product coincides with the direct product $ H \times K $. |
| + | A semi-direct product $ G $ |
| + | of a group $ H $ |
| + | and a group $ K $ |
| + | is given by a homomorphism $ \psi $ |
| + | of $ K $ |
| + | into the group $ \mathop{\rm Aut} H $ |
| + | of automorphisms of $ H $. |
| + | In this case, the formula |
| + | |
| + | $$ |
| + | ( h _ {1} , k _ {1} ) ( h _ {2} , k _ {2} ) = \ |
| + | ( h _ {1} \psi ( k _ {1} ) ( h _ {2} ) , k _ {1} k _ {2} ) |
| + | $$ |
| + | |
| + | for all $ h _ {1} , h _ {2} \in H $, |
| + | $ k _ {1} , k _ {2} \in K $, |
| + | defines the multiplication in $ G $. |
| + | In the case when $ K = \mathop{\rm Aut} H $ |
| + | and $ \psi $ |
| + | is the identity mapping, $ G $ |
| + | is called the holomorph of $ H $( |
| + | cf. [[Holomorph of a group|Holomorph of a group]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "Finite groups" , Chelsea, reprint (1980)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "Finite groups" , Chelsea, reprint (1980)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685035.png" /> is a semi-direct product, then [[conjugation]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685037.png" /> defines a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685038.png" /> from which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685039.png" /> can be reconstructed, i.e. | + | Conversely, if $ G = HK $ |
| + | is a semi-direct product, then [[conjugation]] with $ k $ |
| + | in $ G $ |
| + | defines a homomorphism $ \psi : K \rightarrow \mathop{\rm Aut} H $ |
| + | from which $ G $ |
| + | can be reconstructed, i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685040.png" /></td> </tr></table>
| + | $$ |
| + | \psi (k) (h) = k h k^{-1} . |
| + | $$ |
| | | |
− | As a set the semi-direct product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685042.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685043.png" />. The subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685045.png" /> are subgroups that identify with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086850/s08685047.png" />. | + | As a set the semi-direct product of $ H $ |
| + | and $ K $ |
| + | is $ H \times K $. |
| + | The subsets $ \{ {( h , 1) } : {h \in H } \} $, |
| + | $ \{ {( 1, k) } : {k \in K } \} $ |
| + | are subgroups that identify with $ H $ |
| + | and $ K $. |
A group $ G $
generated by proper subgroups $ H $
and $ K $
with $ H $
normal in $ G $
and $ H \cap K = E $(
so that the quotient group $ G/H $
is isomorphic to $ K $,
cf. Normal subgroup). $ G $
is called a split extension of the group $ H $
by the group $ K $,
or a semi-direct product of $ H $
and $ K $.
If the subgroups $ H $
and $ K $
commute elementwise, i.e. $ hk = kh $
for all $ h \in H $,
$ k \in K $,
their semi-direct product coincides with the direct product $ H \times K $.
A semi-direct product $ G $
of a group $ H $
and a group $ K $
is given by a homomorphism $ \psi $
of $ K $
into the group $ \mathop{\rm Aut} H $
of automorphisms of $ H $.
In this case, the formula
$$
( h _ {1} , k _ {1} ) ( h _ {2} , k _ {2} ) = \
( h _ {1} \psi ( k _ {1} ) ( h _ {2} ) , k _ {1} k _ {2} )
$$
for all $ h _ {1} , h _ {2} \in H $,
$ k _ {1} , k _ {2} \in K $,
defines the multiplication in $ G $.
In the case when $ K = \mathop{\rm Aut} H $
and $ \psi $
is the identity mapping, $ G $
is called the holomorph of $ H $(
cf. Holomorph of a group).
References
[1] | D. Gorenstein, "Finite groups" , Chelsea, reprint (1980) |
Conversely, if $ G = HK $
is a semi-direct product, then conjugation with $ k $
in $ G $
defines a homomorphism $ \psi : K \rightarrow \mathop{\rm Aut} H $
from which $ G $
can be reconstructed, i.e.
$$
\psi (k) (h) = k h k^{-1} .
$$
As a set the semi-direct product of $ H $
and $ K $
is $ H \times K $.
The subsets $ \{ {( h , 1) } : {h \in H } \} $,
$ \{ {( 1, k) } : {k \in K } \} $
are subgroups that identify with $ H $
and $ K $.