Splittable group
A group  $  G $
generated by proper subgroups  $  H $
and  $  K $
with  $  H $
normal in  $  G $
and  $  H \cap K = E $(
so that the quotient group  $  G/H $
is isomorphic to  $  K $, 
cf. Normal subgroup).  $  G $
is called a split extension of the group  $  H $
by the group  $  K $, 
or a semi-direct product of  $  H $
and  $  K $. 
If the subgroups  $  H $
and  $  K $
commute elementwise, i.e.  $  hk = kh $
for all  $  h \in H $, 
$  k \in K $, 
their semi-direct product coincides with the direct product  $  H \times K $. 
A semi-direct product  $  G $
of a group  $  H $
and a group  $  K $
is given by a homomorphism  $  \psi $
of  $  K $
into the group  $   \mathop{\rm Aut}  H $
of automorphisms of  $  H $. 
In this case, the formula
$$ ( h _ {1} , k _ {1} ) ( h _ {2} , k _ {2} ) = \ ( h _ {1} \psi ( k _ {1} ) ( h _ {2} ) , k _ {1} k _ {2} ) $$
for all $ h _ {1} , h _ {2} \in H $, $ k _ {1} , k _ {2} \in K $, defines the multiplication in $ G $. In the case when $ K = \mathop{\rm Aut} H $ and $ \psi $ is the identity mapping, $ G $ is called the holomorph of $ H $( cf. Holomorph of a group).
References
| [1] | D. Gorenstein, "Finite groups" , Chelsea, reprint (1980) | 
Comments
Conversely, if $ G = HK $ is a semi-direct product, then conjugation with $ k $ in $ G $ defines a homomorphism $ \psi : K \rightarrow \mathop{\rm Aut} H $ from which $ G $ can be reconstructed, i.e.
$$ \psi (k) (h) = k h k^{-1} . $$
As a set the semi-direct product of $ H $ and $ K $ is $ H \times K $. The subsets $ \{ {( h , 1) } : {h \in H } \} $, $ \{ {( 1, k) } : {k \in K } \} $ are subgroups that identify with $ H $ and $ K $.
Splittable group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Splittable_group&oldid=55831