Difference between revisions of "Riesz interpolation formula"
(Importing text file) |
m (fix tex) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | r0822601.png | ||
| + | $#A+1 = 10 n = 0 | ||
| + | $#C+1 = 10 : ~/encyclopedia/old_files/data/R082/R.0802260 Riesz interpolation formula | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A formula giving an expression for the derivative of a [[Trigonometric polynomial|trigonometric polynomial]] at some point by the values of the polynomial itself at a finite number of points. If $ T _ {n} ( x) $ | |
| + | is a trigonometric polynomial of degree $ n $ | ||
| + | with real coefficients, then for any real $ x $ | ||
| + | the following equality holds: | ||
| − | + | $$ | |
| + | T _ {n} ^ \prime ( x) = | ||
| + | \frac{1}{4n} | ||
| + | \sum _ { k=1 } ^ { 2n } (- 1) ^ {k+1} | ||
| + | \frac{1}{\sin ^ {2} x _ {k} ^ {( n)} /2 } | ||
| + | T _ {n} ( x + x _ {k} ^ {( n)} ), | ||
| + | $$ | ||
| − | + | where $ x _ {k} ^ {( n)} = ( 2k- 1) \pi /2n $, | |
| + | $ k = 1, \ldots, 2n $. | ||
| + | |||
| + | Riesz' interpolation formula can be generalized to entire functions of [[Function of exponential type|exponential type]]: If $ f $ | ||
| + | is an entire function that is bounded on the real axis $ \mathbf R $ | ||
| + | and of order $ \sigma $, | ||
| + | then | ||
| + | |||
| + | $$ | ||
| + | f ^ { \prime } ( x) = | ||
| + | \frac \sigma {\pi ^ {2} } | ||
| + | \sum _ {k = - \infty } ^ \infty | ||
| + | \frac{(- 1) ^ {k} }{\left ( k+ | ||
| + | \frac{1}{2} | ||
| + | \right ) ^ {2} } | ||
| + | f \left ( x + 2k+ | ||
| + | \frac{1}{2 \sigma } | ||
| + | \pi \right ) , | ||
| + | \ x \in \mathbf R . | ||
| + | $$ | ||
Moreover, the series at right-hand side of the equality converges uniformly on the entire real axis. | Moreover, the series at right-hand side of the equality converges uniformly on the entire real axis. | ||
| Line 15: | Line 51: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Formule d'interpolation pour la dérivée d'une polynôme trigonométrique" ''C.R. Acad. Sci. Paris'' , '''158''' (1914) pp. 1152–1154</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.N. Bernshtein, "Extremal properties of polynomials and best approximation of continuous functions of a real variable" , '''1''' , Moscow-Leningrad (1937) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Riesz, "Formule d'interpolation pour la dérivée d'une polynôme trigonométrique" ''C.R. Acad. Sci. Paris'' , '''158''' (1914) pp. 1152–1154</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.N. Bernshtein, "Extremal properties of polynomials and best approximation of continuous functions of a real variable" , '''1''' , Moscow-Leningrad (1937) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Riesz, "Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome" ''Jahresber. Deutsch. Math.-Ver.'' , '''23''' (1914) pp. 354–368</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) pp. Chapt. 4 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988) pp. Chapt. X</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Riesz, "Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome" ''Jahresber. Deutsch. Math.-Ver.'' , '''23''' (1914) pp. 354–368</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) pp. Chapt. 4 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988) pp. Chapt. X</TD></TR></table> | ||
Latest revision as of 20:25, 10 January 2021
A formula giving an expression for the derivative of a trigonometric polynomial at some point by the values of the polynomial itself at a finite number of points. If $ T _ {n} ( x) $
is a trigonometric polynomial of degree $ n $
with real coefficients, then for any real $ x $
the following equality holds:
$$ T _ {n} ^ \prime ( x) = \frac{1}{4n} \sum _ { k=1 } ^ { 2n } (- 1) ^ {k+1} \frac{1}{\sin ^ {2} x _ {k} ^ {( n)} /2 } T _ {n} ( x + x _ {k} ^ {( n)} ), $$
where $ x _ {k} ^ {( n)} = ( 2k- 1) \pi /2n $, $ k = 1, \ldots, 2n $.
Riesz' interpolation formula can be generalized to entire functions of exponential type: If $ f $ is an entire function that is bounded on the real axis $ \mathbf R $ and of order $ \sigma $, then
$$ f ^ { \prime } ( x) = \frac \sigma {\pi ^ {2} } \sum _ {k = - \infty } ^ \infty \frac{(- 1) ^ {k} }{\left ( k+ \frac{1}{2} \right ) ^ {2} } f \left ( x + 2k+ \frac{1}{2 \sigma } \pi \right ) , \ x \in \mathbf R . $$
Moreover, the series at right-hand side of the equality converges uniformly on the entire real axis.
This result was established by M. Riesz [1].
References
| [1] | M. Riesz, "Formule d'interpolation pour la dérivée d'une polynôme trigonométrique" C.R. Acad. Sci. Paris , 158 (1914) pp. 1152–1154 |
| [2] | S.N. Bernshtein, "Extremal properties of polynomials and best approximation of continuous functions of a real variable" , 1 , Moscow-Leningrad (1937) (In Russian) |
| [3] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
Comments
References
| [a1] | M. Riesz, "Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome" Jahresber. Deutsch. Math.-Ver. , 23 (1914) pp. 354–368 |
| [a2] | A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) pp. Chapt. 4 (Translated from Russian) |
| [a3] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) pp. Chapt. X |
Riesz interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_interpolation_formula&oldid=18359