Namespaces
Variants
Actions

Trigonometric polynomial

From Encyclopedia of Mathematics
Jump to: navigation, search


finite trigonometric sum

An expression of the form

with real coefficients a _ {0} , a _ {k} , b _ {k} , k = 1 \dots n ; the number n is called the order of the trigonometric polynomial (provided | a _ {n} | + | b _ {n} | > 0 ). A trigonometric polynomial can be written in complex form:

T ( x) = \sum _ {k = - n } ^ { n } c _ {k} e ^ {ikx} ,

where

2c _ {k} = \left \{ \begin{array}{ll} a _ {k} - ib _ {k} , &k \geq 0 \ ( \textrm{ with } b _ {0} = 0), \\ a _ {-k} + ib _ {-k} , &k < 0 . \\ \end{array} \right .

Trigonometric polynomials are an important tool in the approximation of functions.

Comments

Cf. also Trigonometric series.

How to Cite This Entry:
Trigonometric polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trigonometric_polynomial&oldid=49827
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article