Difference between revisions of "Multilinear form"
(Importing text file) |
m (latex details) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0652902.png | ||
+ | $#A+1 = 77 n = 0 | ||
+ | $#C+1 = 77 : ~/encyclopedia/old_files/data/M065/M.0605290 Multilinear form, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ n $- | |
+ | linear form, on a unitary $ A $- | ||
+ | module $ E $'' | ||
− | + | A [[Multilinear mapping|multilinear mapping]] $ E ^ {n} \rightarrow A $( | |
+ | here $ A $ | ||
+ | is a commutative associative ring with a unit, cf. [[Associative rings and algebras|Associative rings and algebras]]). A multilinear form is also called a multilinear function ( $ n $- | ||
+ | linear function). Since a multilinear form is a particular case of a multilinear mapping, one can speak of symmetric, skew-symmetric, alternating, symmetrized, and skew-symmetrized multilinear forms. For example, the [[Determinant|determinant]] of a square [[Matrix|matrix]] of order $ n $ | ||
+ | over $ A $ | ||
+ | is a skew-symmetrized (and therefore alternating) $ n $- | ||
+ | linear form on $ A ^ {n} $. | ||
+ | The $ n $- | ||
+ | linear forms on $ E $ | ||
+ | form an $ A $ | ||
+ | module $ L _ {n} ( E, A) $, | ||
+ | which is naturally isomorphic to the module $ (\otimes ^ {n} E) ^ {*} $ | ||
+ | of all linear forms on $ \otimes ^ {n} E $. | ||
+ | In the case $ n = 2 $( | ||
+ | $ n = 3 $), | ||
+ | one speaks of bilinear forms (cf. [[Bilinear form|Bilinear form]]) (respectively, trilinear forms). | ||
+ | |||
+ | The $ n $- | ||
+ | linear forms on $ E $ | ||
+ | are closely related to $ n $- | ||
+ | times covariant tensors, i.e. elements of the module $ T ^ {n} ( E ^ {*} ) = \otimes ^ {n} E ^ {*} $. | ||
+ | More precisely, there is a linear mapping | ||
+ | |||
+ | $$ | ||
+ | \gamma _ {n} : T ^ {n} ( E ^ {*} ) \rightarrow L _ {n} ( E, A), | ||
+ | $$ | ||
such that | such that | ||
− | + | $$ | |
+ | \gamma _ {n} ( u _ {1} \otimes \dots \otimes u _ {n} )( x _ {1} \dots | ||
+ | x _ {n} ) = u _ {1} ( x _ {1} ) \dots u _ {n} ( x _ {n} ) | ||
+ | $$ | ||
− | for any | + | for any $ u _ {i} \in E ^ {*} $, |
+ | $ x _ {i} \in E $. | ||
+ | If the module $ E $ | ||
+ | is free (cf. [[Free module|Free module]]), $ \gamma $ | ||
+ | is injective, while if $ E $ | ||
+ | is also finitely generated, $ \gamma $ | ||
+ | is bijective. In particular, the $ n $- | ||
+ | linear forms on a finite-dimensional vector space over a field are identified with $ n $- | ||
+ | times covariant tensors. | ||
− | For any forms | + | For any forms $ u \in L _ {n} ( E, A) $, |
+ | $ v \in L _ {m} ( E, A) $ | ||
+ | one can define the tensor product $ u \otimes v \in L _ {n+m} ( E, A) $ | ||
+ | via the formula | ||
− | + | $$ | |
+ | u \otimes v ( x _ {1} \dots x _ {n+m} ) = \ | ||
+ | u( x _ {1} \dots x _ {n} ) v( x _ {n+1} \dots x _ {n+m} ). | ||
+ | $$ | ||
− | For symmetrized multilinear forms (cf. [[ | + | For symmetrized multilinear forms (cf. [[Multilinear mapping]]), a symmetrical product is also defined: |
− | + | $$ | |
+ | ( \sigma _ {n} u) \lor ( \sigma _ {m} v) = \sigma _ {n+m} ( u \otimes v), | ||
+ | $$ | ||
while for skew-symmetrized multilinear forms there is an exterior product | while for skew-symmetrized multilinear forms there is an exterior product | ||
− | + | $$ | |
+ | ( \alpha _ {n} u) \wedge ( \alpha _ {m} v) = \ | ||
+ | \alpha _ {n+m} ( u \otimes v). | ||
+ | $$ | ||
− | These operations are extended to the module | + | These operations are extended to the module $ L _ \star ( E, A) = \oplus_{n=0} ^ \infty L( E, A) $, |
+ | where $ L _ {0} ( E, A) = A $, | ||
+ | $ L _ {1} ( E, A) = E ^ {*} $, | ||
+ | to the module of symmetrized forms $ L _ \sigma ( E, A) = \oplus_{n=0} ^ \infty \sigma _ {n} L _ {n} ( E, A) $ | ||
+ | and to the module of skew-symmetrized forms $ L _ \alpha ( E, A) = \oplus_{n=0} ^ \infty \alpha _ {n} L _ {n} ( E, A) $ | ||
+ | respectively, which transforms them into associative algebras with a unit. If $ E $ | ||
+ | is a finitely-generated free module, then the mappings $ \gamma _ {n} $ | ||
+ | define an isomorphism of the [[Tensor algebra|tensor algebra]] $ T( E ^ {*} ) $ | ||
+ | on $ L _ \star ( E, A) $ | ||
+ | and the [[Exterior algebra|exterior algebra]] $ \Lambda ( E ^ {*} ) $ | ||
+ | on the algebra $ L _ \alpha ( E, A) $, | ||
+ | which in that case coincides with the algebra of alternating forms. If $ A $ | ||
+ | is a field of characteristic $ 0 $, | ||
+ | then there is also an isomorphism of the symmetric algebra $ S( E ^ {*} ) $ | ||
+ | on the algebra $ L _ \sigma ( E, A) $ | ||
+ | of symmetric forms. | ||
− | Any multilinear form | + | Any multilinear form $ u \in L _ {n} ( E, A) $ |
+ | corresponds to a function $ \omega _ {n} ( u): E \rightarrow A $, | ||
+ | given by the formula | ||
− | + | $$ | |
+ | \omega _ {n} ( u)( x) = u( x \dots x),\ x \in E. | ||
+ | $$ | ||
− | Functions of the form | + | Functions of the form $ \omega _ {n} ( u) $ |
+ | are called forms of degree $ n $ | ||
+ | on $ E $; | ||
+ | if $ E $ | ||
+ | is a free module, then in coordinates relative to an arbitrary basis they are given by homogeneous polynomials of degree $ n $. | ||
+ | In the case $ n = 2 $( | ||
+ | $ n= 3 $) | ||
+ | one obtains quadratic (cubic) forms on $ E $( | ||
+ | cf. [[Quadratic form|Quadratic form]]; [[Cubic form|Cubic form]]). The form $ F = \omega ( u) $ | ||
+ | completely determines the symmetrization $ \sigma _ {n} u $ | ||
+ | of a form $ u \in L _ {n} ( E, A) $: | ||
− | + | $$ | |
+ | \sigma _ {n} u( x _ {1} \dots x _ {n} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ {r=1} ^ { n } (- 1) ^ {n-r} \sum _ {i _ {1} < \dots < i _ {r} } F( x _ {i _ {1} } + \dots + x _ {i _ {r} } ). | ||
+ | $$ | ||
− | In particular, for | + | In particular, for $ n= 2 $, |
− | + | $$ | |
+ | ( \sigma _ {2} u)( x, y) = \ | ||
+ | F( x+ y) - F( x) - F( y). | ||
+ | $$ | ||
− | The mappings | + | The mappings $ \gamma _ {n} $ |
+ | and $ \omega _ {n} $ | ||
+ | define a homomorphism of the algebra $ S( E ^ {*} ) $ | ||
+ | on the algebra of all polynomial functions (cf. [[Polynomial function|Polynomial function]]) $ P( E) $, | ||
+ | which is an isomorphism if $ E $ | ||
+ | is a finitely-generated free module over an infinite integral domain $ A $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR> | ||
+ | </table> |
Latest revision as of 20:46, 16 January 2024
$ n $-
linear form, on a unitary $ A $-
module $ E $
A multilinear mapping $ E ^ {n} \rightarrow A $( here $ A $ is a commutative associative ring with a unit, cf. Associative rings and algebras). A multilinear form is also called a multilinear function ( $ n $- linear function). Since a multilinear form is a particular case of a multilinear mapping, one can speak of symmetric, skew-symmetric, alternating, symmetrized, and skew-symmetrized multilinear forms. For example, the determinant of a square matrix of order $ n $ over $ A $ is a skew-symmetrized (and therefore alternating) $ n $- linear form on $ A ^ {n} $. The $ n $- linear forms on $ E $ form an $ A $ module $ L _ {n} ( E, A) $, which is naturally isomorphic to the module $ (\otimes ^ {n} E) ^ {*} $ of all linear forms on $ \otimes ^ {n} E $. In the case $ n = 2 $( $ n = 3 $), one speaks of bilinear forms (cf. Bilinear form) (respectively, trilinear forms).
The $ n $- linear forms on $ E $ are closely related to $ n $- times covariant tensors, i.e. elements of the module $ T ^ {n} ( E ^ {*} ) = \otimes ^ {n} E ^ {*} $. More precisely, there is a linear mapping
$$ \gamma _ {n} : T ^ {n} ( E ^ {*} ) \rightarrow L _ {n} ( E, A), $$
such that
$$ \gamma _ {n} ( u _ {1} \otimes \dots \otimes u _ {n} )( x _ {1} \dots x _ {n} ) = u _ {1} ( x _ {1} ) \dots u _ {n} ( x _ {n} ) $$
for any $ u _ {i} \in E ^ {*} $, $ x _ {i} \in E $. If the module $ E $ is free (cf. Free module), $ \gamma $ is injective, while if $ E $ is also finitely generated, $ \gamma $ is bijective. In particular, the $ n $- linear forms on a finite-dimensional vector space over a field are identified with $ n $- times covariant tensors.
For any forms $ u \in L _ {n} ( E, A) $, $ v \in L _ {m} ( E, A) $ one can define the tensor product $ u \otimes v \in L _ {n+m} ( E, A) $ via the formula
$$ u \otimes v ( x _ {1} \dots x _ {n+m} ) = \ u( x _ {1} \dots x _ {n} ) v( x _ {n+1} \dots x _ {n+m} ). $$
For symmetrized multilinear forms (cf. Multilinear mapping), a symmetrical product is also defined:
$$ ( \sigma _ {n} u) \lor ( \sigma _ {m} v) = \sigma _ {n+m} ( u \otimes v), $$
while for skew-symmetrized multilinear forms there is an exterior product
$$ ( \alpha _ {n} u) \wedge ( \alpha _ {m} v) = \ \alpha _ {n+m} ( u \otimes v). $$
These operations are extended to the module $ L _ \star ( E, A) = \oplus_{n=0} ^ \infty L( E, A) $, where $ L _ {0} ( E, A) = A $, $ L _ {1} ( E, A) = E ^ {*} $, to the module of symmetrized forms $ L _ \sigma ( E, A) = \oplus_{n=0} ^ \infty \sigma _ {n} L _ {n} ( E, A) $ and to the module of skew-symmetrized forms $ L _ \alpha ( E, A) = \oplus_{n=0} ^ \infty \alpha _ {n} L _ {n} ( E, A) $ respectively, which transforms them into associative algebras with a unit. If $ E $ is a finitely-generated free module, then the mappings $ \gamma _ {n} $ define an isomorphism of the tensor algebra $ T( E ^ {*} ) $ on $ L _ \star ( E, A) $ and the exterior algebra $ \Lambda ( E ^ {*} ) $ on the algebra $ L _ \alpha ( E, A) $, which in that case coincides with the algebra of alternating forms. If $ A $ is a field of characteristic $ 0 $, then there is also an isomorphism of the symmetric algebra $ S( E ^ {*} ) $ on the algebra $ L _ \sigma ( E, A) $ of symmetric forms.
Any multilinear form $ u \in L _ {n} ( E, A) $ corresponds to a function $ \omega _ {n} ( u): E \rightarrow A $, given by the formula
$$ \omega _ {n} ( u)( x) = u( x \dots x),\ x \in E. $$
Functions of the form $ \omega _ {n} ( u) $ are called forms of degree $ n $ on $ E $; if $ E $ is a free module, then in coordinates relative to an arbitrary basis they are given by homogeneous polynomials of degree $ n $. In the case $ n = 2 $( $ n= 3 $) one obtains quadratic (cubic) forms on $ E $( cf. Quadratic form; Cubic form). The form $ F = \omega ( u) $ completely determines the symmetrization $ \sigma _ {n} u $ of a form $ u \in L _ {n} ( E, A) $:
$$ \sigma _ {n} u( x _ {1} \dots x _ {n} ) = $$
$$ = \ \sum _ {r=1} ^ { n } (- 1) ^ {n-r} \sum _ {i _ {1} < \dots < i _ {r} } F( x _ {i _ {1} } + \dots + x _ {i _ {r} } ). $$
In particular, for $ n= 2 $,
$$ ( \sigma _ {2} u)( x, y) = \ F( x+ y) - F( x) - F( y). $$
The mappings $ \gamma _ {n} $ and $ \omega _ {n} $ define a homomorphism of the algebra $ S( E ^ {*} ) $ on the algebra of all polynomial functions (cf. Polynomial function) $ P( E) $, which is an isomorphism if $ E $ is a finitely-generated free module over an infinite integral domain $ A $.
References
[1] | N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) |
[2] | N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) |
[3] | S. Lang, "Algebra" , Addison-Wesley (1984) |
Multilinear form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multilinear_form&oldid=16677