|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101201.png" /> be a totally real algebraic number field (cf. also [[Field|Field]]; [[Algebraic number|Algebraic number]]) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101202.png" /> be a prime number. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101203.png" /> denote the distinct embeddings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101204.png" /> into the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101205.png" /> of the algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101206.png" />. By the Dirichlet unit theorem (cf. also [[Dirichlet theorem|Dirichlet theorem]]), the unit group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101207.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101208.png" /> has rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l1101209.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012010.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012011.png" />-basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012012.png" />. In [[#References|[a5]]], H.-W. Leopoldt defined the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012014.png" />-adic regulator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012015.png" /> as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012016.png" />-adic analogue of the Dirichlet regulator:
| + | <!-- |
| + | l1101201.png |
| + | $#A+1 = 71 n = 4 |
| + | $#C+1 = 71 : ~/encyclopedia/old_files/data/L110/L.1100120 Leopoldt conjecture |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012017.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012018.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012020.png" />-adic logarithm.
| + | Let $ F $ |
| + | be a totally real algebraic number field (cf. also [[Field|Field]]; [[Algebraic number|Algebraic number]]) and let $ p $ |
| + | be a prime number. Let $ {\sigma _ {1} \dots \sigma _ {r _ {1} } } : F \rightarrow {\mathbf C _ {p} } $ |
| + | denote the distinct embeddings of $ F $ |
| + | into the completion $ \mathbf C _ {p} $ |
| + | of the algebraic closure of $ \mathbf Q _ {p} $. |
| + | By the Dirichlet unit theorem (cf. also [[Dirichlet theorem|Dirichlet theorem]]), the unit group $ U _ {F} $ |
| + | of $ F $ |
| + | has rank $ r = r _ {1} - 1 $. |
| + | Let $ \epsilon _ {1} \dots \epsilon _ {r} $ |
| + | be a $ \mathbf Z $- |
| + | basis of $ U _ {F} $. |
| + | In [[#References|[a5]]], H.-W. Leopoldt defined the $ p $- |
| + | adic regulator $ R _ {p} ( F ) $ |
| + | as the $ p $- |
| + | adic analogue of the Dirichlet regulator: |
| | | |
− | Leopoldt's conjecture is: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012021.png" />.
| + | $$ |
| + | R _ {p} ( F ) = \pm { \mathop{\rm det} } \left ( { \mathop{\rm log} } _ {p} ( \sigma _ {i} ( \epsilon _ {j} ) ) _ {1 \leq i,j \leq r } \right ) , |
| + | $$ |
| | | |
− | The definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012022.png" /> (and therefore also the conjecture) extends to arbitrary number fields (cf. [[#References|[a7]]]) and is nowadays considered in this generality. A. Brumer used transcendental methods developed by A. Baker to prove Leopoldt's conjecture for fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012023.png" /> that are Abelian over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012024.png" /> or over an imaginary quadratic field [[#References|[a2]]]. For specific non-Abelian fields the conjecture has also been verified (cf., e.g., [[#References|[a1]]]), but in general it is still (1996) open.
| + | where $ { { \mathop{\rm log} } _ {p} } : {U _ {F} } \rightarrow {\mathbf C _ {p} } $ |
| + | denotes the $ p $- |
| + | adic logarithm. |
| | | |
− | For a totally real field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012025.png" />, Leopoldt's conjecture is equivalent to the non-vanishing of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012028.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012029.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012030.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012031.png" /> (cf. [[#References|[a5]]], [[#References|[a3]]]).
| + | Leopoldt's conjecture is: $ R _ {p} ( F ) \neq 0 $. |
| | | |
− | For a prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012032.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012033.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012034.png" /> denote the group of units of the local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012035.png" />. There is a canonical mapping
| + | The definition of $ R _ {p} ( F ) $( |
| + | and therefore also the conjecture) extends to arbitrary number fields (cf. [[#References|[a7]]]) and is nowadays considered in this generality. A. Brumer used transcendental methods developed by A. Baker to prove Leopoldt's conjecture for fields $ F $ |
| + | that are Abelian over $ \mathbf Q $ |
| + | or over an imaginary quadratic field [[#References|[a2]]]. For specific non-Abelian fields the conjecture has also been verified (cf., e.g., [[#References|[a1]]]), but in general it is still (1996) open. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012036.png" /></td> </tr></table>
| + | For a totally real field $ F $, |
| + | Leopoldt's conjecture is equivalent to the non-vanishing of the $ p $- |
| + | adic $ \zeta $- |
| + | function $ \zeta _ {F,p } ( s ) $ |
| + | at $ s = 1 $( |
| + | cf. [[#References|[a5]]], [[#References|[a3]]]). |
| | | |
− | and the Leopoldt defect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012037.png" /> is defined as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012038.png" />-rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012039.png" />. [[Class field theory|Class field theory]] yields the following equivalent formulation of the Leopoldt conjecture (cf. [[#References|[a7]]]): Leopoldt's conjecture holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012040.png" />. | + | For a prime $ v $ |
| + | in $ F $, |
| + | let $ U _ {v} $ |
| + | denote the group of units of the local field $ F _ {v} $. |
| + | There is a canonical mapping |
| + | |
| + | $$ |
| + | {f _ {p} } : {U _ {F} \otimes \mathbf Z _ {p} } \rightarrow {\prod _ { {v \mid p } } U _ {v} } |
| + | $$ |
| + | |
| + | and the Leopoldt defect $ \delta _ {F} $ |
| + | is defined as the $ \mathbf Z _ {p} $- |
| + | rank of $ { \mathop{\rm ker} } f _ {p} $. |
| + | [[Class field theory|Class field theory]] yields the following equivalent formulation of the Leopoldt conjecture (cf. [[#References|[a7]]]): Leopoldt's conjecture holds if and only if $ \delta _ {F} = 0 $. |
| | | |
| ==Relation to Iwasawa theory.== | | ==Relation to Iwasawa theory.== |
− | An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012041.png" /> of a number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012042.png" /> is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012044.png" />-extension if it is a [[Galois extension|Galois extension]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012045.png" />. The number of independent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012046.png" />-extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012047.png" /> is related via class field theory to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012048.png" />-rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012049.png" /> and is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012050.png" /> (cf. [[#References|[a4]]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012051.png" /> is the number of pairs of complex-conjugate embeddings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012052.png" />. | + | An extension $ F _ \infty /F $ |
| + | of a number field $ F $ |
| + | is called a $ \mathbf Z _ {p} $- |
| + | extension if it is a [[Galois extension|Galois extension]] and $ { \mathop{\rm Gal} } ( F _ \infty /F ) \cong \mathbf Z _ {p} $. |
| + | The number of independent $ \mathbf Z _ {p} $- |
| + | extensions of $ F $ |
| + | is related via class field theory to the $ \mathbf Z _ {p} $- |
| + | rank of $ { \mathop{\rm coker} } f _ {p} $ |
| + | and is equal to $ 1 + r _ {2} ( F ) + \delta _ {F} $( |
| + | cf. [[#References|[a4]]]), where $ r _ {2} ( F ) $ |
| + | is the number of pairs of complex-conjugate embeddings of $ F $. |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012053.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012054.png" /> denote the unique subfield of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012055.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012056.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012057.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012058.png" /> denote the Leopoldt defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012059.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012060.png" />-extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012061.png" /> satisfies the weak Leopoldt conjecture if the defects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012062.png" /> are bounded independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012063.png" />. It is known (cf. [[#References|[a4]]]) that the weak Leopoldt conjecture holds for the so-called cyclotomic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012065.png" />-extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012066.png" />, i.e. for the unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012067.png" />-extension contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012068.png" />. | + | For $ n \geq 0 $, |
| + | let $ F _ {n} $ |
| + | denote the unique subfield of $ F _ \infty /F $ |
| + | of degree $ p ^ {n} $ |
| + | over $ F $ |
| + | and let $ \delta _ {n} $ |
| + | denote the Leopoldt defect of $ F _ {n} $. |
| + | The $ \mathbf Z _ {p} $- |
| + | extension $ F _ \infty /F $ |
| + | satisfies the weak Leopoldt conjecture if the defects $ \delta _ {n} $ |
| + | are bounded independent of $ n $. |
| + | It is known (cf. [[#References|[a4]]]) that the weak Leopoldt conjecture holds for the so-called cyclotomic $ \mathbf Z _ {p} $- |
| + | extension of $ F $, |
| + | i.e. for the unique $ \mathbf Z _ {p} $- |
| + | extension contained in $ F ( \mu _ {p ^ \infty } ) $. |
| | | |
| ==Relation to Galois cohomology.== | | ==Relation to Galois cohomology.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012069.png" /> denote the [[Galois group|Galois group]] of the maximal pro-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012070.png" />-extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012071.png" />, which is unramified outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012072.png" />. Leopoldt's conjecture is equivalent to the vanishing of the [[Galois cohomology|Galois cohomology]] group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012073.png" /> [[#References|[a6]]]. More generally, it is conjectured that | + | Let $ G _ {p} ( F ) $ |
| + | denote the [[Galois group|Galois group]] of the maximal pro- $ p $- |
| + | extension of $ F $, |
| + | which is unramified outside $ p $. |
| + | Leopoldt's conjecture is equivalent to the vanishing of the [[Galois cohomology|Galois cohomology]] group $ H ^ {2} ( G _ {p} ( F ) , \mathbf Q _ {p} / \mathbf Z _ {p} ) $[[#References|[a6]]]. More generally, it is conjectured that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012074.png" /></td> </tr></table>
| + | $$ |
| + | H ^ {2} ( G _ {p} ( F ) , \mathbf Q _ {p} / \mathbf Z _ {p} ( i ) ) = 0 |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012075.png" /> [[#References|[a6]]]. This is known to be true for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012076.png" /> as a consequence of a profound result of A. Borel in [[Algebraic K-theory|algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012077.png" />-theory]]. | + | for all $ i \neq 1 $[[#References|[a6]]]. This is known to be true for $ i \geq 2 $ |
| + | as a consequence of a profound result of A. Borel in [[Algebraic K-theory|algebraic $ K $- |
| + | theory]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Bertrandias, J.-J. Payan, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012078.png" />-extensions et invariants cyclotomiques" ''Ann. Sci. Ecole Norm. Sup. (4)'' , '''5''' (1972) pp. 517–543</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Brumer, "On the units of algebraic number fields" ''Mathematica'' , '''14''' (1967) pp. 121–124</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Colmez, "Résidu en <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012079.png" /> des fonctions zêta <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012080.png" />-adiques" ''Invent. Math.'' , '''91''' (1988) pp. 371–389</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Iwasawa, "On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110120/l11012081.png" />-extensions of algebraic number fields" ''Ann. of Math.'' , '''98''' (1973) pp. 246–326</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H.-W. Leopoldt, "Zur Arithmetik in abelschen Zahlkörpern" ''J. Reine Angew. Math.'' , '''209''' (1962) pp. 54–71</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Schneider, "Über gewisse Galoiscohomologiegruppen" ''Math. Z.'' , '''168''' (1979) pp. 181–205</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.C. Washington, "Introduction to cyclotomic fields" , Springer (1982)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Bertrandias, J.-J. Payan, "$\Gamma$-extensions et invariants cyclotomiques" ''Ann. Sci. Ecole Norm. Sup. (4)'' , '''5''' (1972) pp. 517–543 {{MR|0480419}} {{MR|0337882}} {{ZBL|0246.12005}} {{ZBL|0246.12004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Brumer, "On the units of algebraic number fields" ''Mathematica'' , '''14''' (1967) pp. 121–124 {{MR|0220694}} {{ZBL|0171.01105}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Colmez, "Résidu en $s=1$ des fonctions zêta $p$-adiques" ''Invent. Math.'' , '''91''' (1988) pp. 371–389</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Iwasawa, "On $\ZZ_\ell$-extensions of algebraic number fields" ''Ann. of Math.'' , '''98''' (1973) pp. 246–326 {{MR|349627}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H.-W. Leopoldt, "Zur Arithmetik in abelschen Zahlkörpern" ''J. Reine Angew. Math.'' , '''209''' (1962) pp. 54–71 {{MR|0139602}} {{ZBL|0204.07101}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Schneider, "Über gewisse Galoiscohomologiegruppen" ''Math. Z.'' , '''168''' (1979) pp. 181–205 {{MR|0544704}} {{ZBL|0421.12024}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.C. Washington, "Introduction to cyclotomic fields" , Springer (1982) {{MR|0718674}} {{ZBL|0484.12001}} </TD></TR></table> |
Let $ F $
be a totally real algebraic number field (cf. also Field; Algebraic number) and let $ p $
be a prime number. Let $ {\sigma _ {1} \dots \sigma _ {r _ {1} } } : F \rightarrow {\mathbf C _ {p} } $
denote the distinct embeddings of $ F $
into the completion $ \mathbf C _ {p} $
of the algebraic closure of $ \mathbf Q _ {p} $.
By the Dirichlet unit theorem (cf. also Dirichlet theorem), the unit group $ U _ {F} $
of $ F $
has rank $ r = r _ {1} - 1 $.
Let $ \epsilon _ {1} \dots \epsilon _ {r} $
be a $ \mathbf Z $-
basis of $ U _ {F} $.
In [a5], H.-W. Leopoldt defined the $ p $-
adic regulator $ R _ {p} ( F ) $
as the $ p $-
adic analogue of the Dirichlet regulator:
$$
R _ {p} ( F ) = \pm { \mathop{\rm det} } \left ( { \mathop{\rm log} } _ {p} ( \sigma _ {i} ( \epsilon _ {j} ) ) _ {1 \leq i,j \leq r } \right ) ,
$$
where $ { { \mathop{\rm log} } _ {p} } : {U _ {F} } \rightarrow {\mathbf C _ {p} } $
denotes the $ p $-
adic logarithm.
Leopoldt's conjecture is: $ R _ {p} ( F ) \neq 0 $.
The definition of $ R _ {p} ( F ) $(
and therefore also the conjecture) extends to arbitrary number fields (cf. [a7]) and is nowadays considered in this generality. A. Brumer used transcendental methods developed by A. Baker to prove Leopoldt's conjecture for fields $ F $
that are Abelian over $ \mathbf Q $
or over an imaginary quadratic field [a2]. For specific non-Abelian fields the conjecture has also been verified (cf., e.g., [a1]), but in general it is still (1996) open.
For a totally real field $ F $,
Leopoldt's conjecture is equivalent to the non-vanishing of the $ p $-
adic $ \zeta $-
function $ \zeta _ {F,p } ( s ) $
at $ s = 1 $(
cf. [a5], [a3]).
For a prime $ v $
in $ F $,
let $ U _ {v} $
denote the group of units of the local field $ F _ {v} $.
There is a canonical mapping
$$
{f _ {p} } : {U _ {F} \otimes \mathbf Z _ {p} } \rightarrow {\prod _ { {v \mid p } } U _ {v} }
$$
and the Leopoldt defect $ \delta _ {F} $
is defined as the $ \mathbf Z _ {p} $-
rank of $ { \mathop{\rm ker} } f _ {p} $.
Class field theory yields the following equivalent formulation of the Leopoldt conjecture (cf. [a7]): Leopoldt's conjecture holds if and only if $ \delta _ {F} = 0 $.
Relation to Iwasawa theory.
An extension $ F _ \infty /F $
of a number field $ F $
is called a $ \mathbf Z _ {p} $-
extension if it is a Galois extension and $ { \mathop{\rm Gal} } ( F _ \infty /F ) \cong \mathbf Z _ {p} $.
The number of independent $ \mathbf Z _ {p} $-
extensions of $ F $
is related via class field theory to the $ \mathbf Z _ {p} $-
rank of $ { \mathop{\rm coker} } f _ {p} $
and is equal to $ 1 + r _ {2} ( F ) + \delta _ {F} $(
cf. [a4]), where $ r _ {2} ( F ) $
is the number of pairs of complex-conjugate embeddings of $ F $.
For $ n \geq 0 $,
let $ F _ {n} $
denote the unique subfield of $ F _ \infty /F $
of degree $ p ^ {n} $
over $ F $
and let $ \delta _ {n} $
denote the Leopoldt defect of $ F _ {n} $.
The $ \mathbf Z _ {p} $-
extension $ F _ \infty /F $
satisfies the weak Leopoldt conjecture if the defects $ \delta _ {n} $
are bounded independent of $ n $.
It is known (cf. [a4]) that the weak Leopoldt conjecture holds for the so-called cyclotomic $ \mathbf Z _ {p} $-
extension of $ F $,
i.e. for the unique $ \mathbf Z _ {p} $-
extension contained in $ F ( \mu _ {p ^ \infty } ) $.
Relation to Galois cohomology.
Let $ G _ {p} ( F ) $
denote the Galois group of the maximal pro- $ p $-
extension of $ F $,
which is unramified outside $ p $.
Leopoldt's conjecture is equivalent to the vanishing of the Galois cohomology group $ H ^ {2} ( G _ {p} ( F ) , \mathbf Q _ {p} / \mathbf Z _ {p} ) $[a6]. More generally, it is conjectured that
$$
H ^ {2} ( G _ {p} ( F ) , \mathbf Q _ {p} / \mathbf Z _ {p} ( i ) ) = 0
$$
for all $ i \neq 1 $[a6]. This is known to be true for $ i \geq 2 $
as a consequence of a profound result of A. Borel in algebraic $ K $-
theory.
References
[a1] | F. Bertrandias, J.-J. Payan, "$\Gamma$-extensions et invariants cyclotomiques" Ann. Sci. Ecole Norm. Sup. (4) , 5 (1972) pp. 517–543 MR0480419 MR0337882 Zbl 0246.12005 Zbl 0246.12004 |
[a2] | A. Brumer, "On the units of algebraic number fields" Mathematica , 14 (1967) pp. 121–124 MR0220694 Zbl 0171.01105 |
[a3] | P. Colmez, "Résidu en $s=1$ des fonctions zêta $p$-adiques" Invent. Math. , 91 (1988) pp. 371–389 |
[a4] | K. Iwasawa, "On $\ZZ_\ell$-extensions of algebraic number fields" Ann. of Math. , 98 (1973) pp. 246–326 MR349627 |
[a5] | H.-W. Leopoldt, "Zur Arithmetik in abelschen Zahlkörpern" J. Reine Angew. Math. , 209 (1962) pp. 54–71 MR0139602 Zbl 0204.07101 |
[a6] | P. Schneider, "Über gewisse Galoiscohomologiegruppen" Math. Z. , 168 (1979) pp. 181–205 MR0544704 Zbl 0421.12024 |
[a7] | L.C. Washington, "Introduction to cyclotomic fields" , Springer (1982) MR0718674 Zbl 0484.12001 |