Difference between revisions of "Genus of a surface"
(Importing text file) |
m |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0440001.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/G044/G.0404000 Genus of a surface | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A numerical birational invariant of a two-dimensional algebraic variety defined over an algebraically closed field $ k $. | |
+ | There are two different genera — the [[Arithmetic genus|arithmetic genus]] and the [[Geometric genus|geometric genus]]. The geometric genus $ p _ {g} $ | ||
+ | of a complete smooth algebraic surface $ X $ | ||
+ | is equal to | ||
− | + | $$ | |
+ | p _ {g} = \mathop{\rm dim} _ {g} H ^ {0} ( X , \Omega _ {X} ^ {2} ) , | ||
+ | $$ | ||
− | + | ''i.e.'' to the dimension of the space of regular differential $ 2 $- | |
+ | forms (cf. [[Differential form|Differential form]]) on $ X $. | ||
+ | The arithmetic genus $ p _ {a} $ | ||
+ | of a complete smooth algebraic surface $ X $ | ||
+ | is equal to | ||
− | + | $$ | |
− | + | p _ {a} = \chi ( X , {\mathcal O} _ {X} ) - 1 = \ | |
− | + | \mathop{\rm dim} _ {k} H ^ {2} ( X , {\mathcal O} _ {X} ) - | |
− | + | \mathop{\rm dim} _ {k} H ^ {1} ( X , {\mathcal O} _ {X} ) . | |
− | + | $$ | |
− | |||
+ | The geometric and arithmetic genera of a complete smooth algebraic surface $ X $ | ||
+ | are related by the formula $ p _ {g} - p _ {a} = q $, | ||
+ | where $ q $ | ||
+ | is the [[Irregularity|irregularity]] of $ X $, | ||
+ | which is equal to the dimension of the space of regular differential $ 1 $- | ||
+ | forms on $ X $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.R., et al. Shafarevich, "Algebraic surfaces" ''Proc. Steklov Inst. Math.'' , '''75''' (1967) ''Trudy Mat. Inst. Steklov.'' , '''75''' (1965) {{MR|1392959}} {{MR|1060325}} {{ZBL|0830.00008}} {{ZBL|0733.14015}} {{ZBL|0832.14026}} {{ZBL|0509.14036}} {{ZBL|0492.14024}} {{ZBL|0379.14006}} {{ZBL|0253.14006}} {{ZBL|0154.21001}} </TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. van de Ven, "Compact complex surfaces" , Springer (1984) {{MR|}} {{ZBL|0718.14023}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR> | ||
+ | </table> |
Latest revision as of 14:59, 30 March 2023
A numerical birational invariant of a two-dimensional algebraic variety defined over an algebraically closed field $ k $.
There are two different genera — the arithmetic genus and the geometric genus. The geometric genus $ p _ {g} $
of a complete smooth algebraic surface $ X $
is equal to
$$ p _ {g} = \mathop{\rm dim} _ {g} H ^ {0} ( X , \Omega _ {X} ^ {2} ) , $$
i.e. to the dimension of the space of regular differential $ 2 $- forms (cf. Differential form) on $ X $. The arithmetic genus $ p _ {a} $ of a complete smooth algebraic surface $ X $ is equal to
$$ p _ {a} = \chi ( X , {\mathcal O} _ {X} ) - 1 = \ \mathop{\rm dim} _ {k} H ^ {2} ( X , {\mathcal O} _ {X} ) - \mathop{\rm dim} _ {k} H ^ {1} ( X , {\mathcal O} _ {X} ) . $$
The geometric and arithmetic genera of a complete smooth algebraic surface $ X $ are related by the formula $ p _ {g} - p _ {a} = q $, where $ q $ is the irregularity of $ X $, which is equal to the dimension of the space of regular differential $ 1 $- forms on $ X $.
References
[1] | I.R., et al. Shafarevich, "Algebraic surfaces" Proc. Steklov Inst. Math. , 75 (1967) Trudy Mat. Inst. Steklov. , 75 (1965) MR1392959 MR1060325 Zbl 0830.00008 Zbl 0733.14015 Zbl 0832.14026 Zbl 0509.14036 Zbl 0492.14024 Zbl 0379.14006 Zbl 0253.14006 Zbl 0154.21001 |
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
[a2] | A. van de Ven, "Compact complex surfaces" , Springer (1984) Zbl 0718.14023 |
[a3] | P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001 |
Genus of a surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Genus_of_a_surface&oldid=16127