|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | m0649601.png |
| + | $#A+1 = 98 n = 0 |
| + | $#C+1 = 98 : ~/encyclopedia/old_files/data/M064/M.0604960 Morse index |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A number associated with a [[Critical point|critical point]] of a smooth function on a manifold or of a geodesic on a Riemannian (or Finsler) manifold. | | A number associated with a [[Critical point|critical point]] of a smooth function on a manifold or of a geodesic on a Riemannian (or Finsler) manifold. |
| | | |
− | 1) The Morse index of a critical point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649601.png" /> of a smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649602.png" /> on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649603.png" /> is equal, by definition, to the negative index of inertia of the Hessian of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649604.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649605.png" /> (cf. [[Hessian of a function|Hessian of a function]]), that is, the dimension of the maximal subspace of the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649606.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649607.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649608.png" /> on which the Hessian is negative definite. This definition makes sense also for twice (Fréchet) differentiable functions on infinite-dimensional Banach spaces. The only difference is that the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m0649609.png" /> is admissible for the index. In this case it is expedient to introduce the idea of the co-index of a critical point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496011.png" /> as the positive index of inertia of the Hessian (the second Fréchet differential) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496012.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496013.png" />. | + | 1) The Morse index of a critical point $ p $ |
| + | of a smooth function $ f $ |
| + | on a manifold $ M $ |
| + | is equal, by definition, to the negative index of inertia of the Hessian of $ f $ |
| + | at $ p $( |
| + | cf. [[Hessian of a function|Hessian of a function]]), that is, the dimension of the maximal subspace of the tangent space $ T M _ {p} $ |
| + | of $ M $ |
| + | at $ p $ |
| + | on which the Hessian is negative definite. This definition makes sense also for twice (Fréchet) differentiable functions on infinite-dimensional Banach spaces. The only difference is that the value $ + \infty $ |
| + | is admissible for the index. In this case it is expedient to introduce the idea of the co-index of a critical point $ p $ |
| + | of $ f $ |
| + | as the positive index of inertia of the Hessian (the second Fréchet differential) of $ f $ |
| + | at $ p $. |
| | | |
− | 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496015.png" /> be smooth submanifolds of a complete Riemannian space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496016.png" />. For a piecewise-smooth path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496017.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496019.png" />, transversal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496021.png" /> at its end-points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496023.png" />, the analogue of a tangent space is the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496024.png" /> of all piecewise-smooth vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496025.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496026.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496028.png" />. For any geodesic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496029.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496030.png" />, orthogonal at its end-points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496032.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496034.png" />, respectively, the second variation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496035.png" /> of the action functional (see [[Morse theory|Morse theory]]) defines a symmetric bilinear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496037.png" /> (the analogue of the Hessian). The Morse index of the geodesic is equal, by definition, to the negative index of inertia of this functional. The null space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496039.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496040.png" /> (the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496041.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496042.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496043.png" />) consists exactly of the Jacobi fields (cf. [[Jacobi vector field|Jacobi vector field]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496044.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496045.png" />, the geodesic is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496047.png" />-degenerate, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496048.png" /> is called the order of degeneracy of the geodesic. | + | 2) Let $ V _ {0} $ |
| + | and $ V _ {1} $ |
| + | be smooth submanifolds of a complete Riemannian space $ M $. |
| + | For a piecewise-smooth path $ \omega : [ 0 , 1 ] \rightarrow M $ |
| + | with $ \omega ( i) \in V _ {i} $, |
| + | $ i = 0 , 1 $, |
| + | transversal to $ V _ {0} $ |
| + | and $ V _ {1} $ |
| + | at its end-points $ \omega ( 0) $ |
| + | and $ \omega ( 1) $, |
| + | the analogue of a tangent space is the vector space $ T _ \omega = T _ {\omega , V _ {0} , V _ {1} } $ |
| + | of all piecewise-smooth vector fields $ W $ |
| + | along $ \omega $ |
| + | for which $ W ( \omega ( i) ) \in ( T V _ {i} ) _ {\omega ( i) } $, |
| + | $ i = 0 , 1 $. |
| + | For any geodesic $ \gamma : [ 0 , 1 ] \rightarrow M $ |
| + | with $ \gamma ( i) \in V _ {i} $, |
| + | orthogonal at its end-points $ \gamma ( 0) $ |
| + | and $ \gamma ( 1) $ |
| + | to $ V _ {0} $ |
| + | and $ V _ {1} $, |
| + | respectively, the second variation $ \delta ^ {2} E $ |
| + | of the action functional (see [[Morse theory|Morse theory]]) defines a symmetric bilinear functional $ E _ {**} $ |
| + | on $ T _ \gamma $( |
| + | the analogue of the Hessian). The Morse index of the geodesic is equal, by definition, to the negative index of inertia of this functional. The null space $ N _ \gamma $ |
| + | of $ E _ {**} $ |
| + | on $ T _ \gamma $( |
| + | the set of $ X \in T _ \gamma $ |
| + | at which $ E _ {**} ( X , Y ) = 0 $ |
| + | for all $ Y \in T _ \gamma $) |
| + | consists exactly of the Jacobi fields (cf. [[Jacobi vector field|Jacobi vector field]]) $ J \in T _ \gamma $. |
| + | If $ N _ \gamma \neq 0 $, |
| + | the geodesic is called $ ( V _ {0} , V _ {1} ) $- |
| + | degenerate, and $ \mathop{\rm dim} N _ \gamma $ |
| + | is called the order of degeneracy of the geodesic. |
| | | |
− | The case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496049.png" /> is a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496050.png" /> is considered below. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496051.png" /> be the [[Normal bundle|normal bundle]] to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496052.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496053.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496054.png" /> be its fibre over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496055.png" />. The restriction of the [[Exponential mapping|exponential mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496056.png" /> defines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496057.png" />. A geodesic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496060.png" />, is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496061.png" />-degenerate if and only if the kernel of the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496062.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496063.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496064.png" /> is not null; in this connection, the dimension of the kernel is equal to the order of degeneracy of the geodesic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496065.png" />. A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496067.png" />, is called a focal point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496068.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496069.png" /> if the geodesic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496070.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496071.png" />-degenerate; the order of degeneracy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496072.png" /> is called the multiplicity of the focal point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496073.png" />. By the [[Sard theorem|Sard theorem]], the set of focal points has measure zero, so a typical geodesic is non-degenerate. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496074.png" /> also consists of one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496075.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496076.png" /> is not excluded), then a focal point is called adjoint to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496077.png" /> along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496078.png" />. The Morse index theorem [[#References|[1]]] asserts that the Morse index of a geodesic is finite and equal to the number of focal points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496081.png" />, taking account of multiplicity. | + | The case when $ V _ {1} $ |
| + | is a point $ q \in M $ |
| + | is considered below. Let $ \nu $ |
| + | be the [[Normal bundle|normal bundle]] to $ V = V _ {0} $ |
| + | in $ M $ |
| + | and let $ \nu ( p) $ |
| + | be its fibre over $ p \in V $. |
| + | The restriction of the [[Exponential mapping|exponential mapping]] $ T M \rightarrow M $ |
| + | defines a mapping $ \mathop{\rm exp} : \nu \rightarrow M $. |
| + | A geodesic $ \gamma ( t) = \mathop{\rm exp} ( t \xi ) $, |
| + | $ \xi \in \nu ( p) $, |
| + | $ 0 \leq t \leq 1 $, |
| + | is $ ( V , \mathop{\rm exp} \xi ) $- |
| + | degenerate if and only if the kernel of the differential $ d _ \xi \mathop{\rm exp} : T \nu _ \xi \rightarrow T M _ { \mathop{\rm exp} \xi } $ |
| + | of $ \mathop{\rm exp} $ |
| + | at $ \xi $ |
| + | is not null; in this connection, the dimension of the kernel is equal to the order of degeneracy of the geodesic $ \gamma $. |
| + | A point $ s = \gamma ( t _ {0} ) $, |
| + | $ 0 < t _ {0} \leq 1 $, |
| + | is called a focal point of $ V $ |
| + | along $ \gamma $ |
| + | if the geodesic $ \gamma ^ \prime : t \rightarrow \gamma ( t / t _ {0} ) $ |
| + | is $ ( V , s ) $- |
| + | degenerate; the order of degeneracy of $ \gamma $ |
| + | is called the multiplicity of the focal point $ s $. |
| + | By the [[Sard theorem|Sard theorem]], the set of focal points has measure zero, so a typical geodesic is non-degenerate. If $ V $ |
| + | also consists of one point $ p \in M $( |
| + | $ p = q $ |
| + | is not excluded), then a focal point is called adjoint to $ p $ |
| + | along $ \gamma $. |
| + | The Morse index theorem [[#References|[1]]] asserts that the Morse index of a geodesic is finite and equal to the number of focal points $ \gamma ( t) $ |
| + | of $ V $, |
| + | $ 0 < t < 1 $, |
| + | taking account of multiplicity. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Morse, "The calculus of variations in the large" , Amer. Math. Soc. (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Ambrose, "The index theorem in Riemannian geometry" ''Ann. of Math.'' , '''73''' (1961) pp. 49–86</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Morse, "The calculus of variations in the large" , Amer. Math. Soc. (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Ambrose, "The index theorem in Riemannian geometry" ''Ann. of Math.'' , '''73''' (1961) pp. 49–86</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | There is a natural generalization of the Morse index of geodesics to [[Variational calculus|variational calculus]], which runs as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496082.png" /> be a real-valued smooth function on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496083.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496084.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496085.png" /> be a smooth submanifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496086.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496087.png" /> be the space of smooth curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496088.png" /> for which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496089.png" />-jet lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496091.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496092.png" /> is a Banach manifold, on which one has the smooth functional | + | There is a natural generalization of the Morse index of geodesics to [[Variational calculus|variational calculus]], which runs as follows. Let $ f $ |
| + | be a real-valued smooth function on an open subset $ Z $ |
| + | of $ [ 0 , 1 ] \times T M $ |
| + | and let $ R $ |
| + | be a smooth submanifold of $ M \times M $. |
| + | Let $ C $ |
| + | be the space of smooth curves $ \omega : [ 0 , 1 ] \rightarrow M $ |
| + | for which the $ 1 $- |
| + | jet lies in $ Z $ |
| + | and $ ( \omega ( 0) , \omega ( 1) ) \in R $. |
| + | Then $ C $ |
| + | is a Banach manifold, on which one has the smooth functional |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496093.png" /></td> </tr></table>
| + | $$ |
| + | F : \omega \mapsto \int\limits _ { 0 } ^ { 1 } |
| + | f \left ( t , \omega ( t) , |
| + | \frac{d \omega }{dt} |
| + | ( t) \right ) d t . |
| + | $$ |
| | | |
− | One then considers the Morse index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496094.png" /> at critical curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496095.png" />; it is finite if the Hessian of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496096.png" /> is positive definite at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064960/m06496099.png" /> (Legendre's condition, cf. [[Legendre condition|Legendre condition]]). | + | One then considers the Morse index of $ F $ |
| + | at critical curves $ \omega $; |
| + | it is finite if the Hessian of $ v \mapsto f ( t , x , v ) $ |
| + | is positive definite at $ x = \omega ( t) $, |
| + | $ v = ( d \omega / dt) ( t) $, |
| + | $ t \in [ 0 , 1 ] $( |
| + | Legendre's condition, cf. [[Legendre condition|Legendre condition]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor, "Morse theory" , Princeton Univ. Press (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Klingenberg, "Lectures on closed geodesics" , Springer (1978)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Milnor, "Morse theory" , Princeton Univ. Press (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Klingenberg, "Lectures on closed geodesics" , Springer (1978)</TD></TR></table> |
A number associated with a critical point of a smooth function on a manifold or of a geodesic on a Riemannian (or Finsler) manifold.
1) The Morse index of a critical point $ p $
of a smooth function $ f $
on a manifold $ M $
is equal, by definition, to the negative index of inertia of the Hessian of $ f $
at $ p $(
cf. Hessian of a function), that is, the dimension of the maximal subspace of the tangent space $ T M _ {p} $
of $ M $
at $ p $
on which the Hessian is negative definite. This definition makes sense also for twice (Fréchet) differentiable functions on infinite-dimensional Banach spaces. The only difference is that the value $ + \infty $
is admissible for the index. In this case it is expedient to introduce the idea of the co-index of a critical point $ p $
of $ f $
as the positive index of inertia of the Hessian (the second Fréchet differential) of $ f $
at $ p $.
2) Let $ V _ {0} $
and $ V _ {1} $
be smooth submanifolds of a complete Riemannian space $ M $.
For a piecewise-smooth path $ \omega : [ 0 , 1 ] \rightarrow M $
with $ \omega ( i) \in V _ {i} $,
$ i = 0 , 1 $,
transversal to $ V _ {0} $
and $ V _ {1} $
at its end-points $ \omega ( 0) $
and $ \omega ( 1) $,
the analogue of a tangent space is the vector space $ T _ \omega = T _ {\omega , V _ {0} , V _ {1} } $
of all piecewise-smooth vector fields $ W $
along $ \omega $
for which $ W ( \omega ( i) ) \in ( T V _ {i} ) _ {\omega ( i) } $,
$ i = 0 , 1 $.
For any geodesic $ \gamma : [ 0 , 1 ] \rightarrow M $
with $ \gamma ( i) \in V _ {i} $,
orthogonal at its end-points $ \gamma ( 0) $
and $ \gamma ( 1) $
to $ V _ {0} $
and $ V _ {1} $,
respectively, the second variation $ \delta ^ {2} E $
of the action functional (see Morse theory) defines a symmetric bilinear functional $ E _ {**} $
on $ T _ \gamma $(
the analogue of the Hessian). The Morse index of the geodesic is equal, by definition, to the negative index of inertia of this functional. The null space $ N _ \gamma $
of $ E _ {**} $
on $ T _ \gamma $(
the set of $ X \in T _ \gamma $
at which $ E _ {**} ( X , Y ) = 0 $
for all $ Y \in T _ \gamma $)
consists exactly of the Jacobi fields (cf. Jacobi vector field) $ J \in T _ \gamma $.
If $ N _ \gamma \neq 0 $,
the geodesic is called $ ( V _ {0} , V _ {1} ) $-
degenerate, and $ \mathop{\rm dim} N _ \gamma $
is called the order of degeneracy of the geodesic.
The case when $ V _ {1} $
is a point $ q \in M $
is considered below. Let $ \nu $
be the normal bundle to $ V = V _ {0} $
in $ M $
and let $ \nu ( p) $
be its fibre over $ p \in V $.
The restriction of the exponential mapping $ T M \rightarrow M $
defines a mapping $ \mathop{\rm exp} : \nu \rightarrow M $.
A geodesic $ \gamma ( t) = \mathop{\rm exp} ( t \xi ) $,
$ \xi \in \nu ( p) $,
$ 0 \leq t \leq 1 $,
is $ ( V , \mathop{\rm exp} \xi ) $-
degenerate if and only if the kernel of the differential $ d _ \xi \mathop{\rm exp} : T \nu _ \xi \rightarrow T M _ { \mathop{\rm exp} \xi } $
of $ \mathop{\rm exp} $
at $ \xi $
is not null; in this connection, the dimension of the kernel is equal to the order of degeneracy of the geodesic $ \gamma $.
A point $ s = \gamma ( t _ {0} ) $,
$ 0 < t _ {0} \leq 1 $,
is called a focal point of $ V $
along $ \gamma $
if the geodesic $ \gamma ^ \prime : t \rightarrow \gamma ( t / t _ {0} ) $
is $ ( V , s ) $-
degenerate; the order of degeneracy of $ \gamma $
is called the multiplicity of the focal point $ s $.
By the Sard theorem, the set of focal points has measure zero, so a typical geodesic is non-degenerate. If $ V $
also consists of one point $ p \in M $(
$ p = q $
is not excluded), then a focal point is called adjoint to $ p $
along $ \gamma $.
The Morse index theorem [1] asserts that the Morse index of a geodesic is finite and equal to the number of focal points $ \gamma ( t) $
of $ V $,
$ 0 < t < 1 $,
taking account of multiplicity.
References
[1] | M. Morse, "The calculus of variations in the large" , Amer. Math. Soc. (1934) |
[2] | W. Ambrose, "The index theorem in Riemannian geometry" Ann. of Math. , 73 (1961) pp. 49–86 |
There is a natural generalization of the Morse index of geodesics to variational calculus, which runs as follows. Let $ f $
be a real-valued smooth function on an open subset $ Z $
of $ [ 0 , 1 ] \times T M $
and let $ R $
be a smooth submanifold of $ M \times M $.
Let $ C $
be the space of smooth curves $ \omega : [ 0 , 1 ] \rightarrow M $
for which the $ 1 $-
jet lies in $ Z $
and $ ( \omega ( 0) , \omega ( 1) ) \in R $.
Then $ C $
is a Banach manifold, on which one has the smooth functional
$$
F : \omega \mapsto \int\limits _ { 0 } ^ { 1 }
f \left ( t , \omega ( t) ,
\frac{d \omega }{dt}
( t) \right ) d t .
$$
One then considers the Morse index of $ F $
at critical curves $ \omega $;
it is finite if the Hessian of $ v \mapsto f ( t , x , v ) $
is positive definite at $ x = \omega ( t) $,
$ v = ( d \omega / dt) ( t) $,
$ t \in [ 0 , 1 ] $(
Legendre's condition, cf. Legendre condition).
References
[a1] | J.W. Milnor, "Morse theory" , Princeton Univ. Press (1963) |
[a2] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
[a3] | W. Klingenberg, "Lectures on closed geodesics" , Springer (1978) |