Namespaces
Variants
Actions

Difference between revisions of "Fuchsian equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
f0418801.png
 +
$#A+1 = 93 n = 0
 +
$#C+1 = 93 : ~/encyclopedia/old_files/data/F041/F.0401880 Fuchsian equation,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''equation of Fuchsian class''
 
''equation of Fuchsian class''
  
 
A linear homogeneous ordinary differential equation in the complex domain,
 
A linear homogeneous ordinary differential equation in the complex domain,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418801.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
w  ^ {(} n) + p _ {1} ( z) w ^ {( n - 1) } + \dots + p _ {n} ( z) w  = 0 ,
 +
$$
 +
 
 +
with analytic coefficients, all singular points of which on the [[Riemann sphere]] are regular singular points (cf. [[Regular singular point]]). Equation (1) belongs to the Fuchsian class if and only if its coefficients have the form
 +
 
 +
$$
 +
p _ {j} ( z)  = \
 +
\prod _ {m = 1 } ^ { k }  ( z - z _ {m} )  ^ {-j} q _ {j} ( z),
 +
$$
 +
 
 +
where  $  z _ {1} \dots z _ {k} $
 +
are distinct points and  $  q _ {j} ( z) $
 +
is a polynomial of degree  $  \leq  j ( k - 1) $.
 +
A system  $  w  ^  \prime  = A ( z) w $
 +
of  $  n $
 +
equations belongs to the Fuchsian class if it has the form
 +
 
 +
$$ \tag{2 }
  
with analytic coefficients, all singular points of which on the [[Riemann sphere|Riemann sphere]] are regular singular points (cf. [[Regular singular point|Regular singular point]]). Equation (1) belongs to the Fuchsian class if and only if its coefficients have the form
+
\frac{dw }{dz }
 +
  = \
 +
\sum _ {m = 1 } ^ { k } 
 +
\frac{A _ {m} }{z - z _ {m} }
 +
w,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418802.png" /></td> </tr></table>
+
where  $  z _ {1} \dots z _ {k} $
 +
are distinct points and the  $  A _ {m} \neq 0 $
 +
are constant  $  ( n \times n) $-
 +
dimensional matrices. The points  $  z _ {1} \dots z _ {k} , \infty $
 +
are singular for the equation (1) and the system (2). Fuchs' identity holds for (1):
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418803.png" /> are distinct points and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418804.png" /> is a polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418805.png" />. A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418806.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418807.png" /> equations belongs to the Fuchsian class if it has the form
+
$$
 +
\sum _ {j = 1 } ^ { n }
 +
\left (
 +
\sum _ {m = 1 } ^ { k }
 +
\rho _ {j}  ^ {m} + \rho _ {j}  ^  \infty
 +
\right )  = ( k - 1)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418808.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\frac{n ( n - 1) }{2}
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f0418809.png" /> are distinct points and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188010.png" /> are constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188011.png" />-dimensional matrices. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188012.png" /> are singular for the equation (1) and the system (2). Fuchs' identity holds for (1):
+
where $  \rho _ {1}  ^ {m} \dots \rho _ {n}  ^ {m} $
 +
are the characteristic exponents at  $  z _ {m} $,
 +
and $  \rho _ {1}  ^  \infty  \dots \rho _ {n}  ^  \infty  $
 +
those at  $  \infty $(
 +
cf. [[Characteristic exponent|Characteristic exponent]]). Fuchsian equations (and systems) are also called regular equations (systems). This class of equations and systems was introduced by J.L. Fuchs .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188013.png" /></td> </tr></table>
+
Let  $  D $
 +
be the Riemann sphere with punctures at the points  $  z _ {1} \dots z _ {k} , \infty $.
 +
Every non-trivial solution of (1) (respectively, every component of a solution of (2)) is an analytic function in  $  D $.  
 +
In general, this function is infinite-valued, and all the singular points of (1) (or (2)) are branch points of it of infinite order.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188014.png" /> are the characteristic exponents at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188015.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188016.png" /> those at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188017.png" /> (cf. [[Characteristic exponent|Characteristic exponent]]). Fuchsian equations (and systems) are also called regular equations (systems). This class of equations and systems was introduced by J.L. Fuchs .
+
A second-order Fuchsian equation with singular points  $  z _ {1} \dots z _ {k} , \infty $
 +
has the form
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188018.png" /> be the Riemann sphere with punctures at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188019.png" />. Every non-trivial solution of (1) (respectively, every component of a solution of (2)) is an analytic function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188020.png" />. In general, this function is infinite-valued, and all the singular points of (1) (or (2)) are branch points of it of infinite order.
+
$$ \tag{3 }
 +
w  ^ {\prime\prime} +
 +
\sum _ {m = 1 } ^ { k }
  
A second-order Fuchsian equation with singular points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188021.png" /> has the form
+
\frac{1 - ( \rho _ {1}  ^ {m} + \rho _ {2}  ^ {m} ) }{z - z _ {m} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
w  ^  \prime  +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188023.png" /></td> </tr></table>
+
$$
 +
+
 +
\sum _ {m = 1 } ^ { k }  \left [
 +
\frac{\rho _ {1}  ^ {m}
 +
\rho _ {2}  ^ {m} \prod _ {j = 1 } ^ { k }  {}  ^  \prime  ( z _ {m} - z _ {j} ) }{z - z _ {m} }
 +
+ Q _ {k - 2 }  ( z) \right ] {
 +
\frac{w}{\prod _ {m = 1 } ^ { k }  ( z - z _ {m} ) }
 +
= 0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188024.png" /> is a polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188025.png" />. The transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188026.png" /> takes a Fuchsian equation to a Fuchsian equation, with
+
where $  Q _ {k - 2 }  ( z) $
 +
is a polynomial of degree $  k - 2 $.  
 +
The transformation $  w = ( z - z _ {m} )  ^ {l} w $
 +
takes a Fuchsian equation to a Fuchsian equation, with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188027.png" /></td> </tr></table>
+
$$
 +
( \rho _ {1}  ^ {m} , \rho _ {2}  ^ {m} )  \rightarrow \
 +
( \rho _ {1}  ^ {m} - l, \rho _ {2}  ^ {m} - l),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188028.png" /></td> </tr></table>
+
$$
 +
( \rho _ {1}  ^  \infty  , \rho _ {2}  ^  \infty  )  \rightarrow \
 +
( \rho _ {1}  ^  \infty  + l, \rho _ {2}  ^  \infty  + l),
 +
$$
  
 
and the characteristic exponents at the other singular points are unchanged. By means of such transformations, equation (3) can be reduced to the form
 
and the characteristic exponents at the other singular points are unchanged. By means of such transformations, equation (3) can be reduced to the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188029.png" /></td> </tr></table>
+
$$
 +
w  ^ {\prime\prime} +
 +
\sum _ {m = 1 } ^ { k }
 +
 
 +
\frac{1 - ( \rho _ {2}  ^ {m} + \rho _ {1}  ^ {m} ) }{z - z _ {m} }
 +
w  ^  \prime  +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188030.png" /></td> </tr></table>
+
$$
 +
+
 +
( \overline \rho \; {} _ {1}  ^  \infty  \overline \rho \; {} _ {2}  ^  \infty  z ^
 +
{n - 2 } + d _ {1} z ^ {n - 3 } + \dots + d _ {n
 +
- 2 }  ) {
 +
\frac{w}{\prod _ {m = 1 } ^ { k }  ( z - z _ {m} ) }
 +
= 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188031.png" /></td> </tr></table>
+
$$
 +
\overline \rho \; {} _ {j}  ^  \infty  = \rho _ {j}  ^  \infty  + \sum _ {m = 1 } ^ { k }  \rho _ {j}  ^ {m} .
 +
$$
  
A second-order Fuchsian equation with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188032.png" /> singular points is completely determined by specifying the values of the characteristic exponents at these points if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188033.png" />. Using a Möbius transformation the equation can be reduced to the form: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188035.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188037.png" /> (the Euler equation); c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188038.png" /> — the [[Papperitz equation|Papperitz equation]] (or Riemann equation).
+
A second-order Fuchsian equation with $  N $
 +
singular points is completely determined by specifying the values of the characteristic exponents at these points if and only if $  N < 4 $.  
 +
Using a Möbius transformation the equation can be reduced to the form: a) $  N = 1 $,  
 +
$  \widetilde{w}  {}  ^ {\prime\prime} = 0 $;  
 +
b) $  N = 2 $,  
 +
$  \zeta  ^ {2} \widetilde{w}  {}  ^ {\prime\prime} + a \zeta \widetilde{w}  {}  ^ {\prime\prime} + b \widetilde{w}  = 0 $(
 +
the Euler equation); c) $  N = 3 $—  
 +
the [[Papperitz equation|Papperitz equation]] (or Riemann equation).
  
 
A matrix Fuchsian equation has the form
 
A matrix Fuchsian equation has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
 
 +
\frac{dW }{dz }
 +
  = \
 +
\sum _ {m = 1 } ^ { k }
 +
 
 +
\frac{W U _ {m} }{z - z _ {m} }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188040.png" /> are distinct points, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188041.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188042.png" />-dimensional matrix function, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188043.png" /> are constant matrices. The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188044.png" /> is called a differential substitution at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188045.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188046.png" /> be a closed curve that starts at a non-singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188047.png" />, is positively oriented and contains only the singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188048.png" /> inside it. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188049.png" /> is a solution of (4) that is holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188050.png" />, then under analytic continuation along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188051.png" />,
+
where $  z _ {1} \dots z _ {k} $
 +
are distinct points, $  W $
 +
is an $  ( n \times n) $-
 +
dimensional matrix function, and the $  U _ {m} \neq 0 $
 +
are constant matrices. The matrix $  U _ {m} $
 +
is called a differential substitution at $  z _ {m} $.  
 +
Let $  \gamma $
 +
be a closed curve that starts at a non-singular point $  b $,  
 +
is positively oriented and contains only the singular point $  z _ {m} $
 +
inside it. If $  W ( z) $
 +
is a solution of (4) that is holomorphic at $  b $,  
 +
then under analytic continuation along $  \gamma $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188052.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
W  \rightarrow  V _ {m} W,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188053.png" /> is a constant matrix, called an integral substitution at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188054.png" />. H. Poincaré (see [[#References|[2]]]) posed the so-called first regular Poincaré problem for a system of the form (4). It consists of the following three problems:
+
where $  V _ {m} $
 +
is a constant matrix, called an integral substitution at $  z _ {m} $.  
 +
H. Poincaré (see [[#References|[2]]]) posed the so-called first regular Poincaré problem for a system of the form (4). It consists of the following three problems:
  
A) to represent the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188055.png" /> in its whole domain of existence;
+
A) to represent the solution $  W ( z) $
 +
in its whole domain of existence;
  
B) to construct the integral substitutions at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188056.png" />;
+
B) to construct the integral substitutions at the points $  z _ {m} $;
  
 
C) to give an analytic characterization of the singularities of the solutions.
 
C) to give an analytic characterization of the singularities of the solutions.
  
In particular, solving problem B) enables one to construct the monodromy group of (4). A solution of the Poincaré problem was obtained by I.A. Lappo-Danilevskii [[#References|[3]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188059.png" /> be the hyperlogarithms:
+
In particular, solving problem B) enables one to construct the monodromy group of (4). A solution of the Poincaré problem was obtained by I.A. Lappo-Danilevskii [[#References|[3]]]. Let $  L _ {b} ( z _ {j _ {1}  } \dots z _ {j _  \nu  } \mid  z) $,
 +
$  j _ {m} \in \{ 1 \dots k \} $,  
 +
$  \nu = 1, 2 \dots $
 +
be the hyperlogarithms:
 +
 
 +
$$
 +
L _ {b} ( z _ {m} \mid  z)  = \
 +
\int\limits _ { b } ^ { z }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188060.png" /></td> </tr></table>
+
\frac{dz }{z - z _ {m} }
 +
,\ \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188061.png" /></td> </tr></table>
+
$$
 +
L _ {b} ( z _ {j _ {1}  } \dots z _ {j _  \nu  } \mid  z)  = \int\limits _ { b } ^ { z } 
 +
\frac{L _ {b} ( z _ {j _ {1}  } \dots z _ {j _ {\nu
 +
- 1 }  } \mid  z) }{z - z _ {j _  \nu  } }
 +
  dz,
 +
$$
  
let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188062.png" /> be the element (germ) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188063.png" /> of a solution of (4), normalized by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188064.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188065.png" /> be the analytic function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188066.png" /> generated by this element. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188067.png" /> is an entire function of the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188068.png" /> and has a series expansion
+
let $  W _ {0} ( z) $
 +
be the element (germ) at $  b $
 +
of a solution of (4), normalized by the condition $  W _ {0} ( b) = I $,  
 +
and let $  W ( z) $
 +
be the analytic function in $  D $
 +
generated by this element. Then $  W ( z) $
 +
is an entire function of the matrices $  U _ {1} \dots U _ {k} $
 +
and has a series expansion
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188069.png" /></td> </tr></table>
+
$$
 +
W ( z)  = I +
 +
\sum _ {\nu = 1 } ^  \infty  \
 +
\sum _ {j _ {1} \dots j _  \nu  } ^ { {( }  1 \dots k) }
 +
U _ {j _ {1}  } \dots U _ {j _  \nu  }
 +
L _ {b} ( z _ {j _ {1}  } \dots z _ {j _  \nu  } \mid  z),
 +
$$
  
which converges uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188070.png" /> on every compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188071.png" />. The integral substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188072.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188073.png" /> corresponding to the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188074.png" /> is an entire function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188075.png" /> and has a series expansion
+
which converges uniformly in $  z $
 +
on every compact set $  K \subset  D $.  
 +
The integral substitution $  V _ {m} $
 +
at $  z _ {m} $
 +
corresponding to the solution $  W ( z) $
 +
is an entire function of $  U _ {1} \dots U _ {k} $
 +
and has a series expansion
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188076.png" /></td> </tr></table>
+
$$
 +
V _ {m}  = I +
 +
\sum _ {\nu = 1 } ^  \infty  \
 +
\sum _ {j _ {1} \dots j _  \nu  } ^ { {( }  1 \dots k) }
 +
U _ {j _ {1}  } \dots U _ {j _  \nu  }
 +
P _ {j} ( z _ {j _ {1}  } \dots z _ {j _  \nu  } \mid  b),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188077.png" /> can be expressed in terms of hyperlogarithms (see [[#References|[3]]], [[#References|[6]]]).
+
where $  P _ {j} $
 +
can be expressed in terms of hyperlogarithms (see [[#References|[3]]], [[#References|[6]]]).
  
 
Formulas that give a solution to problem C) have also been obtained (see [[#References|[3]]]).
 
Formulas that give a solution to problem C) have also been obtained (see [[#References|[3]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten" ''J. Reine Angew. Math.'' , '''66''' (1866) pp. 121–160</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten. Ergänzung" ''J. Reine Angew. Math.'' , '''68''' (1868) pp. 354–385</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Poincaré, "Papers on Fuchsian functions" , Springer (1985) (Translated from French) {{MR|0809181}} {{ZBL|0577.01048}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.A. Lappo-Danilevskii, "Applications des fonctions matrices dans la theorie des systèeme des équations différentielles ordinaires lineaires" , Moscow (1957) (In Russian; translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17 {{MR|0069338}} {{ZBL|0064.33002}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) {{MR|0100119}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''3''' , Addison-Wesley (1964) pp. Part 2 (Translated from Russian) {{MR|0182690}} {{MR|0182688}} {{MR|0182687}} {{MR|0177069}} {{MR|0168707}} {{ZBL|0122.29703}} {{ZBL|0121.25904}} {{ZBL|0118.28402}} {{ZBL|0117.03404}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) {{MR|1570308}} {{MR|0010757}} {{MR|1524980}} {{MR|0000325}} {{MR|1522581}} {{ZBL|0612.34002}} {{ZBL|0191.09801}} {{ZBL|0063.02971}} {{ZBL|0022.13601}} {{ZBL|65.1253.02}} {{ZBL|53.0399.07}} </TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1a]</TD> <TD valign="top"> J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten" ''J. Reine Angew. Math.'' , '''66''' (1866) pp. 121–160</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten. Ergänzung" ''J. Reine Angew. Math.'' , '''68''' (1868) pp. 354–385</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Poincaré, "Papers on Fuchsian functions" , Springer (1985) (Translated from French) {{MR|0809181}} {{ZBL|0577.01048}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.A. Lappo-Danilevskii, "Applications des fonctions matrices dans la théorie des systèmes des équations différentielles ordinaires linéaires" , Moscow (1957) (In Russian; translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17 {{MR|0069338}} {{ZBL|0064.33002}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) {{MR|0100119}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''3''' , Addison-Wesley (1964) pp. Part 2 (Translated from Russian) {{MR|0182690}} {{MR|0182688}} {{MR|0182687}} {{MR|0177069}} {{MR|0168707}} {{ZBL|0122.29703}} {{ZBL|0121.25904}} {{ZBL|0118.28402}} {{ZBL|0117.03404}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) {{MR|1570308}} {{MR|0010757}} {{MR|1524980}} {{MR|0000325}} {{MR|1522581}} {{ZBL|0612.34002}} {{ZBL|0191.09801}} {{ZBL|0063.02971}} {{ZBL|0022.13601}} {{ZBL|65.1253.02}} {{ZBL|53.0399.07}} </TD></TR>
 
+
</table>
  
 
====Comments====
 
====Comments====
The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188078.png" /> of equation (5) is also called the local monodromy at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188079.png" /> or the monodromy matrix at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188080.png" /> of the Fuchsian system (4). Riemann posed the problem, the Riemann monodromy problem, of finding for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188081.png" /> a Fuchsian system with these given monodromy matrices. This problem was essentially solved by J. Plemelj [[#References|[a3]]], G. Birkhoff [[#References|[a4]]], [[#References|[a5]]] and I.A. Lappo-Danilevskii [[#References|[a2]]]. By taking a contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188082.png" /> through all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188084.png" /> and a piecewise-constant matrix function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188085.png" /> (value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188086.png" /> between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188087.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188088.png" />, value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188089.png" /> between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188091.png" />) the problem can be turned into a [[Riemann–Hilbert problem|Riemann–Hilbert problem]]. The conditions on the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188092.png" /> and the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041880/f04188093.png" /> which are necessary and sufficient for the systems to retain the same monodromy under smooth changes in these parameters take the form of differential equations known as the isomonodromy equations or Schlessinger equations. These equations have links to (completely) integrable systems (cf. [[Integrable system|Integrable system]]) and quantum fields, cf., e.g., [[#References|[a6]]], [[#References|[a7]]].
+
The matrix $  V _ {m} $
 +
of equation (5) is also called the local monodromy at $  z _ {m} $
 +
or the monodromy matrix at $  z _ {m} $
 +
of the Fuchsian system (4). Riemann posed the problem, the Riemann monodromy problem, of finding for given $  V _ {i} $
 +
a Fuchsian system with these given monodromy matrices. This problem was essentially solved by J. Plemelj [[#References|[a3]]], G. Birkhoff [[#References|[a4]]], [[#References|[a5]]] and I.A. Lappo-Danilevskii [[#References|[a2]]]. By taking a contour $  \gamma $
 +
through all the $  z _ {i} $
 +
and $  \infty $
 +
and a piecewise-constant matrix function on $  \gamma $(
 +
value $  V _ {1} $
 +
between $  z _ {1} $
 +
and $  z _ {2} $,  
 +
value $  V _ {2} V _ {1} $
 +
between $  z _ {2} $
 +
and $  z _ {3} ,\dots $)  
 +
the problem can be turned into a [[Riemann–Hilbert problem|Riemann–Hilbert problem]]. The conditions on the points $  z _ {i} $
 +
and the matrices $  U _ {m} $
 +
which are necessary and sufficient for the systems to retain the same monodromy under smooth changes in these parameters take the form of differential equations known as the isomonodromy equations or Schlessinger equations. These equations have links to (completely) integrable systems (cf. [[Integrable system|Integrable system]]) and quantum fields, cf., e.g., [[#References|[a6]]], [[#References|[a7]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hille, "Ordinary differential equations in the complex domain" , Wiley (1976) {{MR|0499382}} {{ZBL|0343.34007}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.A. Lappo-Danilevskii, "Mémoire sur la théorie des systèmes des équations différentielles linéaires" , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Plemelj, "Problems in the sense of Riemann and Klein" , Wiley (1964) {{MR|0174815}} {{ZBL|0124.28203}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G.D. Birkhoff, "Singular points of ordinary linear differential equations" ''Trans. Amer. Math. Soc.'' , '''10''' (1909) pp. 434–470 {{MR|1500848}} {{ZBL|46.0695.02}} {{ZBL|45.0484.01}} {{ZBL|44.0373.01}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G.D. Birkhoff, "A simplified treatment of the regular singular point" ''Trans. Amer. Math. Soc.'' , '''11''' (1910) pp. 199–202 {{MR|1500860}} {{ZBL|41.0350.01}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D.V. Chudnovsky, "Riemann, monodromy problem, isomonodromy deformations and completely integrable systems" C. Bardos (ed.) D. Bessis (ed.) , ''Bifurcation phenomena in mathematical physics and related topics'' , Reidel (1980) pp. 385–447 {{MR|0580306}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> M. Jimbo, T. Miwa, M. Sato, "Holonomic quantum fields—the unanticipated link between deformation theory of differential equations and quantum fields" K. Osterwalder (ed.) , ''Mathematical problems in theoretical physics'' , Springer (1980) pp. 119–142 {{MR|0582615}} {{ZBL|}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hille, "Ordinary differential equations in the complex domain" , Wiley (1976) {{MR|0499382}} {{ZBL|0343.34007}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.A. Lappo-Danilevskii, "Mémoire sur la théorie des systèmes des équations différentielles linéaires" , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Plemelj, "Problems in the sense of Riemann and Klein" , Wiley (1964) {{MR|0174815}} {{ZBL|0124.28203}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G.D. Birkhoff, "Singular points of ordinary linear differential equations" ''Trans. Amer. Math. Soc.'' , '''10''' (1909) pp. 434–470 {{MR|1500848}} {{ZBL|46.0695.02}} {{ZBL|45.0484.01}} {{ZBL|44.0373.01}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> G.D. Birkhoff, "A simplified treatment of the regular singular point" ''Trans. Amer. Math. Soc.'' , '''11''' (1910) pp. 199–202 {{MR|1500860}} {{ZBL|41.0350.01}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D.V. Chudnovsky, "Riemann, monodromy problem, isomonodromy deformations and completely integrable systems" C. Bardos (ed.) D. Bessis (ed.) , ''Bifurcation phenomena in mathematical physics and related topics'' , Reidel (1980) pp. 385–447 {{MR|0580306}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> M. Jimbo, T. Miwa, M. Sato, "Holonomic quantum fields—the unanticipated link between deformation theory of differential equations and quantum fields" K. Osterwalder (ed.) , ''Mathematical problems in theoretical physics'' , Springer (1980) pp. 119–142 {{MR|0582615}} {{ZBL|}} </TD></TR></table>

Latest revision as of 17:50, 5 May 2024


equation of Fuchsian class

A linear homogeneous ordinary differential equation in the complex domain,

$$ \tag{1 } w ^ {(} n) + p _ {1} ( z) w ^ {( n - 1) } + \dots + p _ {n} ( z) w = 0 , $$

with analytic coefficients, all singular points of which on the Riemann sphere are regular singular points (cf. Regular singular point). Equation (1) belongs to the Fuchsian class if and only if its coefficients have the form

$$ p _ {j} ( z) = \ \prod _ {m = 1 } ^ { k } ( z - z _ {m} ) ^ {-j} q _ {j} ( z), $$

where $ z _ {1} \dots z _ {k} $ are distinct points and $ q _ {j} ( z) $ is a polynomial of degree $ \leq j ( k - 1) $. A system $ w ^ \prime = A ( z) w $ of $ n $ equations belongs to the Fuchsian class if it has the form

$$ \tag{2 } \frac{dw }{dz } = \ \sum _ {m = 1 } ^ { k } \frac{A _ {m} }{z - z _ {m} } w, $$

where $ z _ {1} \dots z _ {k} $ are distinct points and the $ A _ {m} \neq 0 $ are constant $ ( n \times n) $- dimensional matrices. The points $ z _ {1} \dots z _ {k} , \infty $ are singular for the equation (1) and the system (2). Fuchs' identity holds for (1):

$$ \sum _ {j = 1 } ^ { n } \left ( \sum _ {m = 1 } ^ { k } \rho _ {j} ^ {m} + \rho _ {j} ^ \infty \right ) = ( k - 1) \frac{n ( n - 1) }{2} , $$

where $ \rho _ {1} ^ {m} \dots \rho _ {n} ^ {m} $ are the characteristic exponents at $ z _ {m} $, and $ \rho _ {1} ^ \infty \dots \rho _ {n} ^ \infty $ those at $ \infty $( cf. Characteristic exponent). Fuchsian equations (and systems) are also called regular equations (systems). This class of equations and systems was introduced by J.L. Fuchs .

Let $ D $ be the Riemann sphere with punctures at the points $ z _ {1} \dots z _ {k} , \infty $. Every non-trivial solution of (1) (respectively, every component of a solution of (2)) is an analytic function in $ D $. In general, this function is infinite-valued, and all the singular points of (1) (or (2)) are branch points of it of infinite order.

A second-order Fuchsian equation with singular points $ z _ {1} \dots z _ {k} , \infty $ has the form

$$ \tag{3 } w ^ {\prime\prime} + \sum _ {m = 1 } ^ { k } \frac{1 - ( \rho _ {1} ^ {m} + \rho _ {2} ^ {m} ) }{z - z _ {m} } w ^ \prime + $$

$$ + \sum _ {m = 1 } ^ { k } \left [ \frac{\rho _ {1} ^ {m} \rho _ {2} ^ {m} \prod _ {j = 1 } ^ { k } {} ^ \prime ( z _ {m} - z _ {j} ) }{z - z _ {m} } + Q _ {k - 2 } ( z) \right ] { \frac{w}{\prod _ {m = 1 } ^ { k } ( z - z _ {m} ) } } = 0, $$

where $ Q _ {k - 2 } ( z) $ is a polynomial of degree $ k - 2 $. The transformation $ w = ( z - z _ {m} ) ^ {l} w $ takes a Fuchsian equation to a Fuchsian equation, with

$$ ( \rho _ {1} ^ {m} , \rho _ {2} ^ {m} ) \rightarrow \ ( \rho _ {1} ^ {m} - l, \rho _ {2} ^ {m} - l), $$

$$ ( \rho _ {1} ^ \infty , \rho _ {2} ^ \infty ) \rightarrow \ ( \rho _ {1} ^ \infty + l, \rho _ {2} ^ \infty + l), $$

and the characteristic exponents at the other singular points are unchanged. By means of such transformations, equation (3) can be reduced to the form

$$ w ^ {\prime\prime} + \sum _ {m = 1 } ^ { k } \frac{1 - ( \rho _ {2} ^ {m} + \rho _ {1} ^ {m} ) }{z - z _ {m} } w ^ \prime + $$

$$ + ( \overline \rho \; {} _ {1} ^ \infty \overline \rho \; {} _ {2} ^ \infty z ^ {n - 2 } + d _ {1} z ^ {n - 3 } + \dots + d _ {n - 2 } ) { \frac{w}{\prod _ {m = 1 } ^ { k } ( z - z _ {m} ) } } = 0, $$

$$ \overline \rho \; {} _ {j} ^ \infty = \rho _ {j} ^ \infty + \sum _ {m = 1 } ^ { k } \rho _ {j} ^ {m} . $$

A second-order Fuchsian equation with $ N $ singular points is completely determined by specifying the values of the characteristic exponents at these points if and only if $ N < 4 $. Using a Möbius transformation the equation can be reduced to the form: a) $ N = 1 $, $ \widetilde{w} {} ^ {\prime\prime} = 0 $; b) $ N = 2 $, $ \zeta ^ {2} \widetilde{w} {} ^ {\prime\prime} + a \zeta \widetilde{w} {} ^ {\prime\prime} + b \widetilde{w} = 0 $( the Euler equation); c) $ N = 3 $— the Papperitz equation (or Riemann equation).

A matrix Fuchsian equation has the form

$$ \tag{4 } \frac{dW }{dz } = \ \sum _ {m = 1 } ^ { k } \frac{W U _ {m} }{z - z _ {m} } , $$

where $ z _ {1} \dots z _ {k} $ are distinct points, $ W $ is an $ ( n \times n) $- dimensional matrix function, and the $ U _ {m} \neq 0 $ are constant matrices. The matrix $ U _ {m} $ is called a differential substitution at $ z _ {m} $. Let $ \gamma $ be a closed curve that starts at a non-singular point $ b $, is positively oriented and contains only the singular point $ z _ {m} $ inside it. If $ W ( z) $ is a solution of (4) that is holomorphic at $ b $, then under analytic continuation along $ \gamma $,

$$ \tag{5 } W \rightarrow V _ {m} W, $$

where $ V _ {m} $ is a constant matrix, called an integral substitution at $ z _ {m} $. H. Poincaré (see [2]) posed the so-called first regular Poincaré problem for a system of the form (4). It consists of the following three problems:

A) to represent the solution $ W ( z) $ in its whole domain of existence;

B) to construct the integral substitutions at the points $ z _ {m} $;

C) to give an analytic characterization of the singularities of the solutions.

In particular, solving problem B) enables one to construct the monodromy group of (4). A solution of the Poincaré problem was obtained by I.A. Lappo-Danilevskii [3]. Let $ L _ {b} ( z _ {j _ {1} } \dots z _ {j _ \nu } \mid z) $, $ j _ {m} \in \{ 1 \dots k \} $, $ \nu = 1, 2 \dots $ be the hyperlogarithms:

$$ L _ {b} ( z _ {m} \mid z) = \ \int\limits _ { b } ^ { z } \frac{dz }{z - z _ {m} } ,\ \ $$

$$ L _ {b} ( z _ {j _ {1} } \dots z _ {j _ \nu } \mid z) = \int\limits _ { b } ^ { z } \frac{L _ {b} ( z _ {j _ {1} } \dots z _ {j _ {\nu - 1 } } \mid z) }{z - z _ {j _ \nu } } dz, $$

let $ W _ {0} ( z) $ be the element (germ) at $ b $ of a solution of (4), normalized by the condition $ W _ {0} ( b) = I $, and let $ W ( z) $ be the analytic function in $ D $ generated by this element. Then $ W ( z) $ is an entire function of the matrices $ U _ {1} \dots U _ {k} $ and has a series expansion

$$ W ( z) = I + \sum _ {\nu = 1 } ^ \infty \ \sum _ {j _ {1} \dots j _ \nu } ^ { {( } 1 \dots k) } U _ {j _ {1} } \dots U _ {j _ \nu } L _ {b} ( z _ {j _ {1} } \dots z _ {j _ \nu } \mid z), $$

which converges uniformly in $ z $ on every compact set $ K \subset D $. The integral substitution $ V _ {m} $ at $ z _ {m} $ corresponding to the solution $ W ( z) $ is an entire function of $ U _ {1} \dots U _ {k} $ and has a series expansion

$$ V _ {m} = I + \sum _ {\nu = 1 } ^ \infty \ \sum _ {j _ {1} \dots j _ \nu } ^ { {( } 1 \dots k) } U _ {j _ {1} } \dots U _ {j _ \nu } P _ {j} ( z _ {j _ {1} } \dots z _ {j _ \nu } \mid b), $$

where $ P _ {j} $ can be expressed in terms of hyperlogarithms (see [3], [6]).

Formulas that give a solution to problem C) have also been obtained (see [3]).

References

[1a] J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten" J. Reine Angew. Math. , 66 (1866) pp. 121–160
[1b] J.L. Fuchs, "Zur Theorie der linearen Differentialgleichungen mit Veränderlichen Koeffizienten. Ergänzung" J. Reine Angew. Math. , 68 (1868) pp. 354–385
[2] H. Poincaré, "Papers on Fuchsian functions" , Springer (1985) (Translated from French) MR0809181 Zbl 0577.01048
[3] I.A. Lappo-Danilevskii, "Applications des fonctions matrices dans la théorie des systèmes des équations différentielles ordinaires linéaires" , Moscow (1957) (In Russian; translated from French)
[4] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17 MR0069338 Zbl 0064.33002
[5] V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) MR0100119
[6] V.I. Smirnov, "A course of higher mathematics" , 3 , Addison-Wesley (1964) pp. Part 2 (Translated from Russian) MR0182690 MR0182688 MR0182687 MR0177069 MR0168707 Zbl 0122.29703 Zbl 0121.25904 Zbl 0118.28402 Zbl 0117.03404
[7] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956) MR1570308 MR0010757 MR1524980 MR0000325 MR1522581 Zbl 0612.34002 Zbl 0191.09801 Zbl 0063.02971 Zbl 0022.13601 Zbl 65.1253.02 Zbl 53.0399.07

Comments

The matrix $ V _ {m} $ of equation (5) is also called the local monodromy at $ z _ {m} $ or the monodromy matrix at $ z _ {m} $ of the Fuchsian system (4). Riemann posed the problem, the Riemann monodromy problem, of finding for given $ V _ {i} $ a Fuchsian system with these given monodromy matrices. This problem was essentially solved by J. Plemelj [a3], G. Birkhoff [a4], [a5] and I.A. Lappo-Danilevskii [a2]. By taking a contour $ \gamma $ through all the $ z _ {i} $ and $ \infty $ and a piecewise-constant matrix function on $ \gamma $( value $ V _ {1} $ between $ z _ {1} $ and $ z _ {2} $, value $ V _ {2} V _ {1} $ between $ z _ {2} $ and $ z _ {3} ,\dots $) the problem can be turned into a Riemann–Hilbert problem. The conditions on the points $ z _ {i} $ and the matrices $ U _ {m} $ which are necessary and sufficient for the systems to retain the same monodromy under smooth changes in these parameters take the form of differential equations known as the isomonodromy equations or Schlessinger equations. These equations have links to (completely) integrable systems (cf. Integrable system) and quantum fields, cf., e.g., [a6], [a7].

References

[a1] E. Hille, "Ordinary differential equations in the complex domain" , Wiley (1976) MR0499382 Zbl 0343.34007
[a2] I.A. Lappo-Danilevskii, "Mémoire sur la théorie des systèmes des équations différentielles linéaires" , Dover, reprint (1953)
[a3] J. Plemelj, "Problems in the sense of Riemann and Klein" , Wiley (1964) MR0174815 Zbl 0124.28203
[a4] G.D. Birkhoff, "Singular points of ordinary linear differential equations" Trans. Amer. Math. Soc. , 10 (1909) pp. 434–470 MR1500848 Zbl 46.0695.02 Zbl 45.0484.01 Zbl 44.0373.01
[a5] G.D. Birkhoff, "A simplified treatment of the regular singular point" Trans. Amer. Math. Soc. , 11 (1910) pp. 199–202 MR1500860 Zbl 41.0350.01
[a6] D.V. Chudnovsky, "Riemann, monodromy problem, isomonodromy deformations and completely integrable systems" C. Bardos (ed.) D. Bessis (ed.) , Bifurcation phenomena in mathematical physics and related topics , Reidel (1980) pp. 385–447 MR0580306
[a7] M. Jimbo, T. Miwa, M. Sato, "Holonomic quantum fields—the unanticipated link between deformation theory of differential equations and quantum fields" K. Osterwalder (ed.) , Mathematical problems in theoretical physics , Springer (1980) pp. 119–142 MR0582615
How to Cite This Entry:
Fuchsian equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fuchsian_equation&oldid=24448
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article