|
|
(6 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. [[Knot theory|Knot theory]]). Named after H. Seifert [[#References|[1]]], who applied the construction to obtain algebraic invariants of one-dimensional knots in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838401.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838402.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838403.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838404.png" />-component [[Link|link]], i.e. a pair consisting of an oriented sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838405.png" /> and a differentiable or piecewise-linear oriented submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838406.png" /> of this sphere which is homeomorphic to the disconnected union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838407.png" /> copies of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838408.png" />. There exists a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s0838409.png" />-dimensional orientable submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384011.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384012.png" />; it is known as the Seifert manifold of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384013.png" />. The orientation of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384014.png" /> is determined by the orientation of its boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384015.png" />; since the orientation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384016.png" /> is fixed, the normal bundle to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384018.png" /> turns out to be oriented, so that one can speak of the field of positive normals to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384019.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384020.png" /> be a small displacement along this field, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384021.png" /> is the complement to an open tubular neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384024.png" /> is odd, one defines a pairing
| + | <!-- |
| + | s0838401.png |
| + | $#A+1 = 78 n = 0 |
| + | $#C+1 = 78 : ~/encyclopedia/old_files/data/S083/S.0803840 Seifert matrix |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384025.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | associating with an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384026.png" /> the [[Linking coefficient|linking coefficient]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384028.png" />. This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384029.png" /> is known as the Seifert pairing of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384032.png" /> are of finite order, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384033.png" />. The following formula is valid:
| + | A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. [[Knot theory]]). Named after H. Seifert [[#References|[1]]], who applied the construction to obtain algebraic invariants of one-dimensional knots in $S^{3}$. |
| + | Let $ L = ( S ^ {n+2} , l ^ {n} ) $ |
| + | be an $n$-dimensional $m$- |
| + | component [[link]], ''i.e.'' a pair consisting of an oriented sphere $ S ^ {n+2} $ |
| + | and a differentiable or piecewise-linear oriented submanifold $ l ^ {n} $ |
| + | of this sphere which is homeomorphic to the disconnected union of $ m $ |
| + | copies of the sphere $ S^{n}$. |
| + | There exists a compact $ ( n+ 1) $- |
| + | dimensional orientable submanifold $ V $ |
| + | of $ S ^ {n+2} $ |
| + | such that $ \partial V = l $; |
| + | it is known as the Seifert manifold of the link $ L $. |
| + | The orientation of the Seifert manifold $ V $ |
| + | is determined by the orientation of its boundary $ \partial V = l $; |
| + | since the orientation of $ S ^ {n+2} $ |
| + | is fixed, the normal bundle to $ V $ |
| + | in $ S ^ {n+2} $ |
| + | turns out to be oriented, so that one can speak of the field of positive normals to $ V $. |
| + | Let $ i _ {+} : V \rightarrow Y $ |
| + | be a small displacement along this field, where $ Y $ |
| + | is the complement to an open tubular neighbourhood of $ V $ |
| + | in $ S ^ {n+2} $. |
| + | If $ n = 2 q - 1 $ |
| + | is odd, one defines a pairing |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384034.png" /></td> </tr></table>
| + | $$ |
| + | \theta : H_q V \otimes H_q V \rightarrow \ZZ, |
| + | $$ |
| | | |
− | where the right-hand side is the [[Intersection index (in homology)|intersection index (in homology)]] of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384037.png" />.
| + | associating with an element $ z _ {1} \otimes z _ {2} $ |
| + | the [[linking coefficient]] of the classes $ z _ {1} \in H _ {q} V $ |
| + | and $ i _ {+} * z _ {2} \in H _ {q} Y $. |
| + | This $ \theta $ |
| + | is known as the Seifert pairing of the link $ L $. |
| + | If $ z _ {1} $ |
| + | and $ z _ {2} $ |
| + | are of finite order, then $ \theta ( z _ {1} \otimes z _ {2} ) = 0 $. |
| + | The following formula is valid: |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384038.png" /> be a basis for the free part of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384039.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384040.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384041.png" /> with integer entries is called the Seifert matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384042.png" />. The Seifert matrix of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384043.png" />-dimensional knot has the following property: The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384044.png" /> is unimodular (cf. [[Unimodular matrix|Unimodular matrix]]), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384045.png" /> the [[Signature|signature]] of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384046.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384048.png" /> is the transpose of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384049.png" />). Any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384050.png" /> with integer entries is the Seifert matrix of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384051.png" />-dimensional knot if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384052.png" />, and the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384053.png" /> is unimodular.
| + | $$ |
| + | \theta ( z _ {1} \otimes z _ {2} ) + ( - 1 ) ^ {q} \theta ( z _ {2} \otimes z _ {1} ) = z _ {1} \cdot z _ {2} , |
| + | $$ |
| | | |
− | The Seifert matrix itself is not an invariant of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384054.png" />; the reason is that the construction of the Seifert manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384055.png" /> and the choice of the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384056.png" /> are not unique. Matrices of the form
| + | where the right-hand side is the [[Intersection index (in homology)|intersection index]] of the classes $ z _ {1} $ |
| + | and $ z _ {2} $ |
| + | on $ V $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384057.png" /></td> </tr></table>
| + | Let $ e _ {1} \dots e _ {k} $ |
| + | be a basis for the free part of the group $ H _ {q} V $. |
| + | The $ ( k \times k ) $- |
| + | matrix $ A = \| \theta ( e _ {i} \otimes e _ {j} ) \| $ |
| + | with integer entries is called the Seifert matrix of $ L $. |
| + | The Seifert matrix of any $ ( 2 q - 1 ) $- |
| + | dimensional knot has the following property: The matrix $ A = ( - 1 ) ^ {q} A^t $ |
| + | is unimodular (cf. [[Unimodular matrix|Unimodular matrix]]), and for $ q = 2 $ |
| + | the [[signature]] of the matrix $A + A^t$ |
| + | is divisible by $16$ ($A^t$ is the transpose of $A$). |
| + | Any square matrix $ A $ |
| + | with integer entries is the Seifert matrix of some $ ( 2 q - 1 ) $- |
| + | dimensional knot if $ q \neq 2 $, |
| + | and the matrix $ A + ( - 1 ) ^ {q} A^t $ |
| + | is unimodular. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384058.png" /> is a row-vector and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384059.png" /> a column-vector, are known as elementary expansions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384060.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384061.png" /> itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384063.png" />-equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384065.png" /> is a unimodular matrix). For higher-dimensional knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384066.png" /> and one-dimensional links <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384067.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384068.png" />-equivalence class of the Seifert matrix is an invariant of the type of the link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384069.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384070.png" /> is a knot, the Seifert matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384071.png" /> uniquely determines a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384072.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384073.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384074.png" /> is an infinite cyclic covering of the complement of the knot. The polynomial matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384075.png" /> is the Alexander matrix (see [[Alexander invariants|Alexander invariants]]) of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384076.png" />. The Seifert matrix also determines the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384077.png" />-dimensional homology and the linking coefficients in the cyclic coverings of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384078.png" /> that ramify over the link.
| + | The Seifert matrix itself is not an invariant of the link $ L $; |
| + | the reason is that the construction of the Seifert manifold $ V $ |
| + | and the choice of the basis $ e _ {1} \dots e _ {k} $ |
| + | are not unique. Matrices of the form |
| | | |
− | ====References====
| + | $$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Seifert, "Ueber das Geschlecht von Knoten" ''Math. Ann.'' , '''110''' (1934) pp. 571–592</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Levine, "Polynomial invariants of knots of codimension two" ''Ann. of Math.'' , '''84''' (1966) pp. 537–554</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Levine, "An algebraic classification of some knots of codimension two" ''Comment. Math. Helv.'' , '''45''' (1970) pp. 185–198</TD></TR></table>
| + | \left \| |
| + | |
| + | \begin{array}{lcc} |
| + | A &{} & 0 \\ |
| + | \alpha & 0 & 1 \\ |
| + | 0 & 1 & 0 \\ |
| + | \end{array} |
| | | |
| + | \right \| ,\ \ |
| + | \left \| |
| + | \begin{array}{lll} |
| + | A &\beta & 0 \\ |
| + | 0 & 0 & 1 \\ |
| + | {} & 0 & 0 \\ |
| + | \end{array} |
| + | \right \| , |
| + | $$ |
| | | |
| + | where $ \alpha $ |
| + | is a row-vector and $ \beta $ |
| + | a column-vector, are known as elementary expansions of $ A $, |
| + | while $ A $ |
| + | itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be $ S $- |
| + | equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations $ A \rightarrow P^t A P $, |
| + | where $ P $ |
| + | is a unimodular matrix). For higher-dimensional knots $ ( m = 1 ) $ |
| + | and one-dimensional links $ ( n = 1 ) $ |
| + | the $ S $- |
| + | equivalence class of the Seifert matrix is an invariant of the type of the link $ L $. |
| + | In case $ L $ |
| + | is a knot, the Seifert matrix $ A $ |
| + | uniquely determines a $\ZZ[t, t^{-1} ] $- |
| + | module $ H _ {q} \widetilde{X} $, |
| + | where $ \widetilde{X} $ |
| + | is an infinite cyclic covering of the complement of the knot. The polynomial matrix $ t A + ( - 1 ) ^ {q} A ^t $ |
| + | is the Alexander matrix (see [[Alexander invariants]]) of the module $ H _ {q} \widetilde{X} $. |
| + | The Seifert matrix also determines the $ q $- |
| + | dimensional homology and the linking coefficients in the cyclic coverings of the sphere $ S ^ {2q+1}$ |
| + | that ramify over the link. |
| | | |
| ====Comments==== | | ====Comments==== |
− | For a description of the Seifert manifold in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083840/s08384079.png" />, i.e. the Seifert surface of a link, cf. [[Knot and link diagrams|Knot and link diagrams]]. | + | For a description of the Seifert manifold in the case $n = 1$, ''i.e.'' the Seifert surface of a link, see [[Knot and link diagrams]]. |
| + | |
| + | ====References==== |
| + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Seifert, "Ueber das Geschlecht von Knoten" ''Math. Ann.'' , '''110''' (1934) pp. 571–592</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> J. Levine, "Polynomial invariants of knots of codimension two" ''Ann. of Math.'' , '''84''' (1966) pp. 537–554</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> J. Levine, "An algebraic classification of some knots of codimension two" ''Comment. Math. Helv.'' , '''45''' (1970) pp. 185–198</TD></TR> |
| + | </table> |
A matrix associated with knots and links in order to investigate their topological properties by algebraic methods (cf. Knot theory). Named after H. Seifert [1], who applied the construction to obtain algebraic invariants of one-dimensional knots in $S^{3}$.
Let $ L = ( S ^ {n+2} , l ^ {n} ) $
be an $n$-dimensional $m$-
component link, i.e. a pair consisting of an oriented sphere $ S ^ {n+2} $
and a differentiable or piecewise-linear oriented submanifold $ l ^ {n} $
of this sphere which is homeomorphic to the disconnected union of $ m $
copies of the sphere $ S^{n}$.
There exists a compact $ ( n+ 1) $-
dimensional orientable submanifold $ V $
of $ S ^ {n+2} $
such that $ \partial V = l $;
it is known as the Seifert manifold of the link $ L $.
The orientation of the Seifert manifold $ V $
is determined by the orientation of its boundary $ \partial V = l $;
since the orientation of $ S ^ {n+2} $
is fixed, the normal bundle to $ V $
in $ S ^ {n+2} $
turns out to be oriented, so that one can speak of the field of positive normals to $ V $.
Let $ i _ {+} : V \rightarrow Y $
be a small displacement along this field, where $ Y $
is the complement to an open tubular neighbourhood of $ V $
in $ S ^ {n+2} $.
If $ n = 2 q - 1 $
is odd, one defines a pairing
$$
\theta : H_q V \otimes H_q V \rightarrow \ZZ,
$$
associating with an element $ z _ {1} \otimes z _ {2} $
the linking coefficient of the classes $ z _ {1} \in H _ {q} V $
and $ i _ {+} * z _ {2} \in H _ {q} Y $.
This $ \theta $
is known as the Seifert pairing of the link $ L $.
If $ z _ {1} $
and $ z _ {2} $
are of finite order, then $ \theta ( z _ {1} \otimes z _ {2} ) = 0 $.
The following formula is valid:
$$
\theta ( z _ {1} \otimes z _ {2} ) + ( - 1 ) ^ {q} \theta ( z _ {2} \otimes z _ {1} ) = z _ {1} \cdot z _ {2} ,
$$
where the right-hand side is the intersection index of the classes $ z _ {1} $
and $ z _ {2} $
on $ V $.
Let $ e _ {1} \dots e _ {k} $
be a basis for the free part of the group $ H _ {q} V $.
The $ ( k \times k ) $-
matrix $ A = \| \theta ( e _ {i} \otimes e _ {j} ) \| $
with integer entries is called the Seifert matrix of $ L $.
The Seifert matrix of any $ ( 2 q - 1 ) $-
dimensional knot has the following property: The matrix $ A = ( - 1 ) ^ {q} A^t $
is unimodular (cf. Unimodular matrix), and for $ q = 2 $
the signature of the matrix $A + A^t$
is divisible by $16$ ($A^t$ is the transpose of $A$).
Any square matrix $ A $
with integer entries is the Seifert matrix of some $ ( 2 q - 1 ) $-
dimensional knot if $ q \neq 2 $,
and the matrix $ A + ( - 1 ) ^ {q} A^t $
is unimodular.
The Seifert matrix itself is not an invariant of the link $ L $;
the reason is that the construction of the Seifert manifold $ V $
and the choice of the basis $ e _ {1} \dots e _ {k} $
are not unique. Matrices of the form
$$
\left \|
\begin{array}{lcc}
A &{} & 0 \\
\alpha & 0 & 1 \\
0 & 1 & 0 \\
\end{array}
\right \| ,\ \
\left \|
\begin{array}{lll}
A &\beta & 0 \\
0 & 0 & 1 \\
{} & 0 & 0 \\
\end{array}
\right \| ,
$$
where $ \alpha $
is a row-vector and $ \beta $
a column-vector, are known as elementary expansions of $ A $,
while $ A $
itself is called an elementary reduction of its elementary expansions. Two square matrices are said to be $ S $-
equivalent if one can be derived from the other via elementary reductions, elementary expansions and unimodular congruences (i.e. transformations $ A \rightarrow P^t A P $,
where $ P $
is a unimodular matrix). For higher-dimensional knots $ ( m = 1 ) $
and one-dimensional links $ ( n = 1 ) $
the $ S $-
equivalence class of the Seifert matrix is an invariant of the type of the link $ L $.
In case $ L $
is a knot, the Seifert matrix $ A $
uniquely determines a $\ZZ[t, t^{-1} ] $-
module $ H _ {q} \widetilde{X} $,
where $ \widetilde{X} $
is an infinite cyclic covering of the complement of the knot. The polynomial matrix $ t A + ( - 1 ) ^ {q} A ^t $
is the Alexander matrix (see Alexander invariants) of the module $ H _ {q} \widetilde{X} $.
The Seifert matrix also determines the $ q $-
dimensional homology and the linking coefficients in the cyclic coverings of the sphere $ S ^ {2q+1}$
that ramify over the link.
For a description of the Seifert manifold in the case $n = 1$, i.e. the Seifert surface of a link, see Knot and link diagrams.
References
[1] | H. Seifert, "Ueber das Geschlecht von Knoten" Math. Ann. , 110 (1934) pp. 571–592 |
[2] | R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963) |
[3] | J. Levine, "Polynomial invariants of knots of codimension two" Ann. of Math. , 84 (1966) pp. 537–554 |
[4] | J. Levine, "An algebraic classification of some knots of codimension two" Comment. Math. Helv. , 45 (1970) pp. 185–198 |