|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | The [[Topological structure (topology)|topological structure (topology)]] of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101802.png" />-space (a space of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101803.png" />; cf. also [[Fréchet space|Fréchet space]]), i.e. a completely metrizable [[Topological vector space|topological vector space]]. The term was introduced by S. Banach in honour of M. Fréchet. Many authors, however, demand additionally local convexity. A complete topological vector space is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101804.png" />-space if and only if it has a countable basis of neighbourhoods of the origin. The topology of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101805.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101806.png" /> can be given by means of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101808.png" />-norm, i.e. a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f1101809.png" /> satisfying:
| + | <!-- |
| + | f1101802.png |
| + | $#A+1 = 124 n = 0 |
| + | $#C+1 = 124 : ~/encyclopedia/old_files/data/F110/F.1100180 Fr\Aeechet topology |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018011.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018012.png" />;
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018014.png" />;
| + | The [[Topological structure (topology)|topological structure (topology)]] of an $ F $- |
| + | space (a space of type $ F $; |
| + | cf. also [[Fréchet space|Fréchet space]]), i.e. a completely metrizable [[Topological vector space|topological vector space]]. The term was introduced by S. Banach in honour of M. Fréchet. Many authors, however, demand additionally local convexity. A complete topological vector space is an $ F $- |
| + | space if and only if it has a countable basis of neighbourhoods of the origin. The topology of an $ F $- |
| + | space $ X $ |
| + | can be given by means of an $ F $- |
| + | norm, i.e. a function $ x \mapsto \| x \| $ |
| + | satisfying: |
| | | |
− | iii) for each scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018016.png" />, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018018.png" />. This means that the (complete) topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018019.png" /> can be given by means of a distance of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018020.png" />. The completion of any metrizable topological vector space (cf. [[Completion|Completion]]) is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018021.png" />-space and, consequently, the topology of any metric vector space can be given by means of a translation-invariant distance. Without loss of generality it can be assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018022.png" /> depends only upon <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018023.png" /> and that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018024.png" /> is non-decreasing for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018025.png" />. If one relaxes condition i) so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018026.png" /> can hold for a non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018027.png" />, one obtains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018029.png" />-semi-norm. The topology of an arbitrary topological vector space can be given by means of a family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018030.png" />-semi-norms; consequently, every complete topological vector space is an inverse (projective) limit of a directed family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018031.png" />-spaces.
| + | i) $ \| x \| \geq 0 $ |
| + | and $ \| x \| = 0 $ |
| + | if and only if $ x = 0 $; |
| | | |
− | ==Important classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018032.png" />-spaces.==
| + | ii) $ \| {x + y } \| \leq \| x \| + \| y \| $ |
| + | for all $ x,y \in X $; |
| | | |
| + | iii) for each scalar $ \lambda $, |
| + | $ {\lim\limits } _ {\| x \| \rightarrow 0 } \| {\lambda x } \| = 0 $, |
| + | and for each $ x \in X $, |
| + | $ {\lim\limits } _ {| \lambda | \rightarrow 0 } \| {\lambda x } \| = 0 $. |
| + | This means that the (complete) topology of $ X $ |
| + | can be given by means of a distance of the form $ d ( x,y ) = \| {x - y } \| $. |
| + | The completion of any metrizable topological vector space (cf. [[Completion|Completion]]) is an $ F $- |
| + | space and, consequently, the topology of any metric vector space can be given by means of a translation-invariant distance. Without loss of generality it can be assumed that $ \| {\lambda x } \| $ |
| + | depends only upon $ | \lambda | $ |
| + | and that the function $ | \lambda | \mapsto \| {\lambda x } \| $ |
| + | is non-decreasing for each $ x \in X $. |
| + | If one relaxes condition i) so that $ \| x \| = 0 $ |
| + | can hold for a non-zero $ x $, |
| + | one obtains an $ F $- |
| + | semi-norm. The topology of an arbitrary topological vector space can be given by means of a family of $ F $- |
| + | semi-norms; consequently, every complete topological vector space is an inverse (projective) limit of a directed family of $ F $- |
| + | spaces. |
| | | |
− | ===Locally convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018033.png" />-spaces.=== | + | ==Important classes of $ F $-spaces.== |
− | Such spaces are also called spaces of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018036.png" /> (some authors call them just Fréchet spaces, but see [[Fréchet space|Fréchet space]]). The topology of such a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018037.png" /> can be given by means of an increasing sequence of (homogeneous) semi-norms
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018038.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | ===Locally convex $ F $-spaces.=== |
| + | Such spaces are also called spaces of type $ B _ {o} $( |
| + | some authors call them just Fréchet spaces, but see [[Fréchet space|Fréchet space]]). The topology of such a space $ X $ |
| + | can be given by means of an increasing sequence of (homogeneous) semi-norms |
| | | |
− | so that a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018039.png" /> of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018040.png" /> tends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018041.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018042.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018043.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018044.png" />-norm giving this topology can be written as
| + | $$ \tag{a1 } |
| + | \left \| x \right \| _ {1} \leq \left \| x \right \| _ {2} \leq \dots , \textrm{ for all } x \in X, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018045.png" /></td> </tr></table>
| + | so that a sequence $ ( x _ {k} ) $ |
| + | of elements of $ X $ |
| + | tends to $ 0 $ |
| + | if and only if $ {\lim\limits } _ {k} \| {x _ {k} } \| _ {n} = 0 $ |
| + | for $ n = 1,2, \dots $. |
| + | An $ F $- |
| + | norm giving this topology can be written as |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018046.png" /> is a continuous [[Linear operator|linear operator]] from a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018047.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018048.png" /> to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018049.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018050.png" />, then for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018051.png" /> there are a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018052.png" /> and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018053.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018055.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018056.png" /> (it is important here that the systems of semi-norms giving, respectively, the topologies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018058.png" /> satisfy (a1)). The dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018059.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018060.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018061.png" /> (the space of all continuous linear functionals provided with the topology of uniform convergence on bounded sets) is said to be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018063.png" />-space; it is non-metrizable (unless <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018064.png" /> is a [[Banach space|Banach space]]). Any space of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018065.png" /> is an inverse (projective) limit of a sequence of Banach spaces.
| + | $$ |
| + | \left \| x \right \| = \sum _ { 1 } ^ \infty 2 ^ {- n } { |
| + | \frac{\left \| x \right \| _ {n} }{1 + \left \| x \right \| _ {n} } |
| + | } . |
| + | $$ |
| + | |
| + | If $ T $ |
| + | is a continuous [[Linear operator|linear operator]] from a $ B _ {o} $- |
| + | space $ X $ |
| + | to a $ B _ {o} $- |
| + | space $ Y $, |
| + | then for each $ n $ |
| + | there are a $ k ( n ) $ |
| + | and a $ C _ {n} > 0 $ |
| + | such that $ \| {Tx } \| _ {n} ^ {( Y ) } \leq C _ {n} \| x \| _ {k ( n ) } ^ {( X ) } $, |
| + | $ x \in X $, |
| + | for all $ n $( |
| + | it is important here that the systems of semi-norms giving, respectively, the topologies of $ X $ |
| + | and $ Y $ |
| + | satisfy (a1)). The dual space $ X ^ \prime $ |
| + | of a $ B _ {o} $- |
| + | space $ X $( |
| + | the space of all continuous linear functionals provided with the topology of uniform convergence on bounded sets) is said to be an $ LF $- |
| + | space; it is non-metrizable (unless $ X $ |
| + | is a [[Banach space|Banach space]]). Any space of type $ B _ {o} $ |
| + | is an inverse (projective) limit of a sequence of Banach spaces. |
| | | |
| ===Complete locally bounded spaces.=== | | ===Complete locally bounded spaces.=== |
− | A topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018066.png" /> is said to be locally bounded if it has a bounded neighbourhood of the origin (then it has a basis of such neighbourhoods consisting of bounded sets). The topology of such a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018067.png" /> is metrizable and can be given by means of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018069.png" />-homogeneous norm, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018070.png" />, i.e. an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018071.png" />-norm satisfying instead of iii) the more restrictive condition | + | A topological vector space $ X $ |
| + | is said to be locally bounded if it has a bounded neighbourhood of the origin (then it has a basis of such neighbourhoods consisting of bounded sets). The topology of such a space $ X $ |
| + | is metrizable and can be given by means of a $ p $- |
| + | homogeneous norm, $ 0 < p \leq 1 $, |
| + | i.e. an $ F $- |
| + | norm satisfying instead of iii) the more restrictive condition |
| | | |
− | iiia) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018072.png" /> for all scalars <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018073.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018074.png" />. | + | iiia) $ \| {\lambda x } \| = | \lambda | ^ {p} \| x \| $ |
| + | for all scalars $ \lambda $ |
| + | and all $ x \in X $. |
| | | |
− | For this reason, locally bounded spaces are sometimes called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018076.png" />-normed spaces. The class of all Banach spaces is exactly the intersection of the class of locally convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018077.png" />-spaces and the class of complete locally bounded spaces. The dual space of a locally bounded space can be trivial, i.e. consist only of a zero functional. | + | For this reason, locally bounded spaces are sometimes called $ p $- |
| + | normed spaces. The class of all Banach spaces is exactly the intersection of the class of locally convex $ F $- |
| + | spaces and the class of complete locally bounded spaces. The dual space of a locally bounded space can be trivial, i.e. consist only of a zero functional. |
| | | |
− | ===Locally pseudo-convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018078.png" />-spaces.=== | + | ===Locally pseudo-convex $ F $-spaces.=== |
− | They are like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018079.png" />-spaces, but with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018080.png" />-homogeneous semi-norms instead of homogeneous semi-norms (the exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018081.png" /> may depend upon the semi-norm). This class contains the class of locally convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018082.png" />-spaces and the class of complete locally bounded spaces. | + | They are like $ B _ {o} $- |
| + | spaces, but with $ p $- |
| + | homogeneous semi-norms instead of homogeneous semi-norms (the exponent $ p $ |
| + | may depend upon the semi-norm). This class contains the class of locally convex $ F $- |
| + | spaces and the class of complete locally bounded spaces. |
| | | |
− | ==Examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018083.png" />-spaces.== | + | ==Examples of $ F $-spaces.== |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018084.png" /> of all Lebesgue-measurable functions on the unit interval with the topology of convergence in measure (asymptotic convergence) is a space of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018085.png" />. Its topology can be given by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018086.png" />-norm | + | The space $ S [ 0,1 ] $ |
| + | of all Lebesgue-measurable functions on the unit interval with the topology of convergence in measure (asymptotic convergence) is a space of type $ F $. |
| + | Its topology can be given by the $ F $- |
| + | norm |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018087.png" /></td> </tr></table>
| + | $$ |
| + | \left \| x \right \| = \int\limits _ { 0 } ^ { 1 } { { |
| + | \frac{\left | {x ( t ) } \right | }{1 + \left | {x ( t ) } \right | } |
| + | } } {dt } . |
| + | $$ |
| | | |
| This space is not locally pseudo-convex. | | This space is not locally pseudo-convex. |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018088.png" /> of all infinitely differentiable functions on the unit interval with the topology of unform convergence of functions together with all derivatives is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018089.png" />-space. Its topology can be given by semi-norms | + | The space $ C ^ \infty [ 0,1 ] $ |
| + | of all infinitely differentiable functions on the unit interval with the topology of unform convergence of functions together with all derivatives is a $ B _ {o} $- |
| + | space. Its topology can be given by semi-norms |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018090.png" /></td> </tr></table>
| + | $$ |
| + | \left \| x \right \| _ {n} = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018091.png" /></td> </tr></table>
| + | $$ |
| + | = |
| + | \max \left \{ \max _ {[ 0,1 ] } \left | {x ( t ) } \right | , \max _ {[ 0,1 ] } \left | {x ^ \prime ( t ) } \right | \dots \max _ {[ 0,1 ] } \left | {x ^ {( n - 1 ) } ( t ) } \right | \right \} . |
| + | $$ |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018092.png" /> of all entire functions of one complex variable with the topology of uniform convergence on compact subsets of the complex plane is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018093.png" />-space. Its topology can be given by the semi-norms | + | The space $ {\mathcal E} $ |
| + | of all entire functions of one complex variable with the topology of uniform convergence on compact subsets of the complex plane is a $ B _ {o} $- |
| + | space. Its topology can be given by the semi-norms |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018094.png" /></td> </tr></table>
| + | $$ |
| + | \left \| x \right \| _ {n} = \max _ {\left | \zeta \right | \leq n } \left | {x ( \zeta ) } \right | . |
| + | $$ |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018095.png" /> on the unit interval, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018096.png" />, is a complete locally bounded space with trivial dual. Its topology can be given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018097.png" /> (its discrete analogue, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018098.png" /> of all sequences summable with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f11018099.png" />-th power, has a non-trivial dual). | + | The space $ L _ {p} [ 0,1 ] $ |
| + | on the unit interval, $ 0 < p < 1 $, |
| + | is a complete locally bounded space with trivial dual. Its topology can be given by $ \| x \| _ {p} = \int _ {0} ^ {1} {| {x ( t ) } | ^ {p} } {dt } $( |
| + | its discrete analogue, the space $ l _ {p} $ |
| + | of all sequences summable with the $ p $- |
| + | th power, has a non-trivial dual). |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180100.png" /> with the semi-norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180101.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180102.png" />, is a locally pseudo-convex space of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180103.png" /> which is not locally bounded. | + | The space $ L ^ {0 + } [ 0,1 ] = \cap _ {0 < p \leq 1 } L _ {p} [ 0,1 ] $ |
| + | with the semi-norms $ \| x \| _ {p _ {n} } $, |
| + | where $ 0 < p _ {n} \rightarrow 0 $, |
| + | is a locally pseudo-convex space of type $ F $ |
| + | which is not locally bounded. |
| | | |
− | ==General facts about <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180104.png" />-spaces.== | + | ==General facts about $ F $-spaces.== |
− | A [[Linear operator|linear operator]] between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180105.png" /> spaces is continuous if and only if it maps bounded sets onto bounded sets. | + | A [[Linear operator|linear operator]] between $ F $ |
| + | spaces is continuous if and only if it maps bounded sets onto bounded sets. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180106.png" /> be a family of continuous linear operators from an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180107.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180108.png" /> to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180109.png" />-space space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180110.png" />. If the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180111.png" /> is bounded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180112.png" /> for each fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180113.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180114.png" /> is equicontinuous (the [[Mazur–Orlicz theorem|Mazur–Orlicz theorem]]; it is a theorem of Banach–Steinhaus type, cf. also [[Banach–Steinhaus theorem|Banach–Steinhaus theorem]]). | + | Let $ {\mathcal A} $ |
| + | be a family of continuous linear operators from an $ F $- |
| + | space $ X $ |
| + | to an $ F $- |
| + | space space $ Y $. |
| + | If the set $ \{ {Tx } : {T \in {\mathcal A} } \} $ |
| + | is bounded in $ Y $ |
| + | for each fixed $ x \in X $, |
| + | then $ {\mathcal A} $ |
| + | is equicontinuous (the [[Mazur–Orlicz theorem|Mazur–Orlicz theorem]]; it is a theorem of Banach–Steinhaus type, cf. also [[Banach–Steinhaus theorem|Banach–Steinhaus theorem]]). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180115.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180116.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180117.png" />-spaces and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180118.png" /> is a sequence of continuous linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180119.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180120.png" /> such that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180121.png" /> the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180122.png" /> exists, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180123.png" /> is a continuous linear operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180124.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180125.png" />. | + | If $ X $ |
| + | and $ Y $ |
| + | are $ F $- |
| + | spaces and $ ( T _ {n} ) $ |
| + | is a sequence of continuous linear operators from $ X $ |
| + | to $ Y $ |
| + | such that for each $ x \in X $ |
| + | the limit $ Tx = {\lim\limits } _ {n} T _ {n} x $ |
| + | exists, then $ x \mapsto Tx $ |
| + | is a continuous linear operator from $ X $ |
| + | to $ Y $. |
| | | |
− | The image of an open set under a continuous linear operator between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180126.png" />-spaces is open (the open mapping theorem). | + | The image of an open set under a continuous linear operator between $ F $- |
| + | spaces is open (the open mapping theorem). |
| | | |
− | The graph of a linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180127.png" /> between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180128.png" />-spaces is closed if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180129.png" /> is continuous (the closed graph theorem). | + | The graph of a linear operator $ T $ |
| + | between $ F $- |
| + | spaces is closed if and only if $ T $ |
| + | is continuous (the closed graph theorem). |
| | | |
− | If a one-to-one continuous linear operator maps an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180130.png" />-space onto an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180131.png" />-space, then the inverse operator is continuous (the inverse operator theorem). | + | If a one-to-one continuous linear operator maps an $ F $- |
| + | space onto an $ F $- |
| + | space, then the inverse operator is continuous (the inverse operator theorem). |
| | | |
− | A separately continuous bilinear mapping between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110180/f110180132.png" />-spaces is jointly continuous (cf. also [[Continuous function|Continuous function]]). | + | A separately continuous bilinear mapping between $ F $- |
| + | spaces is jointly continuous (cf. also [[Continuous function|Continuous function]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Banach, "Théorie des operations lineaires" , Warszawa (1932)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Espaces vectorielles topologiques" , Paris (1981) pp. Chapt. 1–5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''I. General theory''' , Wiley, reprint (1988)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Grothendieck, "Topological vector spaces" , New York (1973)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Jarchow, "Locally convex spaces" , Teubner (1981)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''I–II''' , New York (1969–1979)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S. Rolewicz, "Metric linear spaces" , PWN & Reidel (1972)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Springer (1971)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> L. Waelbroeck, "Topological vector spaces and algebras" , ''Lecture Notes in Mathematics'' , '''230''' , Springer (1971)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> A. Wilansky, "Modern methods in topological vector spaces" , New York (1978)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Banach, "Théorie des opérations linéaires" , Warszawa (1932)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Espaces vectoriels topologiques" , Paris (1981) pp. Chapt. 1–5</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''I. General theory''' , Wiley, reprint (1988)</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Grothendieck, "Topological vector spaces" , New York (1973)</TD></TR> |
| + | <TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Jarchow, "Locally convex spaces" , Teubner (1981)</TD></TR> |
| + | <TR><TD valign="top">[a6]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''I–II''' , New York (1969–1979)</TD></TR> |
| + | <TR><TD valign="top">[a7]</TD> <TD valign="top"> S. Rolewicz, "Metric linear spaces" , PWN & Reidel (1972)</TD></TR> |
| + | <TR><TD valign="top">[a8]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Springer (1971)</TD></TR> |
| + | <TR><TD valign="top">[a9]</TD> <TD valign="top"> L. Waelbroeck, "Topological vector spaces and algebras" , ''Lecture Notes in Mathematics'' , '''230''' , Springer (1971)</TD></TR> |
| + | <TR><TD valign="top">[a10]</TD> <TD valign="top"> A. Wilansky, "Modern methods in topological vector spaces" , New York (1978)</TD></TR> |
| + | </table> |
The topological structure (topology) of an $ F $-
space (a space of type $ F $;
cf. also Fréchet space), i.e. a completely metrizable topological vector space. The term was introduced by S. Banach in honour of M. Fréchet. Many authors, however, demand additionally local convexity. A complete topological vector space is an $ F $-
space if and only if it has a countable basis of neighbourhoods of the origin. The topology of an $ F $-
space $ X $
can be given by means of an $ F $-
norm, i.e. a function $ x \mapsto \| x \| $
satisfying:
i) $ \| x \| \geq 0 $
and $ \| x \| = 0 $
if and only if $ x = 0 $;
ii) $ \| {x + y } \| \leq \| x \| + \| y \| $
for all $ x,y \in X $;
iii) for each scalar $ \lambda $,
$ {\lim\limits } _ {\| x \| \rightarrow 0 } \| {\lambda x } \| = 0 $,
and for each $ x \in X $,
$ {\lim\limits } _ {| \lambda | \rightarrow 0 } \| {\lambda x } \| = 0 $.
This means that the (complete) topology of $ X $
can be given by means of a distance of the form $ d ( x,y ) = \| {x - y } \| $.
The completion of any metrizable topological vector space (cf. Completion) is an $ F $-
space and, consequently, the topology of any metric vector space can be given by means of a translation-invariant distance. Without loss of generality it can be assumed that $ \| {\lambda x } \| $
depends only upon $ | \lambda | $
and that the function $ | \lambda | \mapsto \| {\lambda x } \| $
is non-decreasing for each $ x \in X $.
If one relaxes condition i) so that $ \| x \| = 0 $
can hold for a non-zero $ x $,
one obtains an $ F $-
semi-norm. The topology of an arbitrary topological vector space can be given by means of a family of $ F $-
semi-norms; consequently, every complete topological vector space is an inverse (projective) limit of a directed family of $ F $-
spaces.
Important classes of $ F $-spaces.
Locally convex $ F $-spaces.
Such spaces are also called spaces of type $ B _ {o} $(
some authors call them just Fréchet spaces, but see Fréchet space). The topology of such a space $ X $
can be given by means of an increasing sequence of (homogeneous) semi-norms
$$ \tag{a1 }
\left \| x \right \| _ {1} \leq \left \| x \right \| _ {2} \leq \dots , \textrm{ for all } x \in X,
$$
so that a sequence $ ( x _ {k} ) $
of elements of $ X $
tends to $ 0 $
if and only if $ {\lim\limits } _ {k} \| {x _ {k} } \| _ {n} = 0 $
for $ n = 1,2, \dots $.
An $ F $-
norm giving this topology can be written as
$$
\left \| x \right \| = \sum _ { 1 } ^ \infty 2 ^ {- n } {
\frac{\left \| x \right \| _ {n} }{1 + \left \| x \right \| _ {n} }
} .
$$
If $ T $
is a continuous linear operator from a $ B _ {o} $-
space $ X $
to a $ B _ {o} $-
space $ Y $,
then for each $ n $
there are a $ k ( n ) $
and a $ C _ {n} > 0 $
such that $ \| {Tx } \| _ {n} ^ {( Y ) } \leq C _ {n} \| x \| _ {k ( n ) } ^ {( X ) } $,
$ x \in X $,
for all $ n $(
it is important here that the systems of semi-norms giving, respectively, the topologies of $ X $
and $ Y $
satisfy (a1)). The dual space $ X ^ \prime $
of a $ B _ {o} $-
space $ X $(
the space of all continuous linear functionals provided with the topology of uniform convergence on bounded sets) is said to be an $ LF $-
space; it is non-metrizable (unless $ X $
is a Banach space). Any space of type $ B _ {o} $
is an inverse (projective) limit of a sequence of Banach spaces.
Complete locally bounded spaces.
A topological vector space $ X $
is said to be locally bounded if it has a bounded neighbourhood of the origin (then it has a basis of such neighbourhoods consisting of bounded sets). The topology of such a space $ X $
is metrizable and can be given by means of a $ p $-
homogeneous norm, $ 0 < p \leq 1 $,
i.e. an $ F $-
norm satisfying instead of iii) the more restrictive condition
iiia) $ \| {\lambda x } \| = | \lambda | ^ {p} \| x \| $
for all scalars $ \lambda $
and all $ x \in X $.
For this reason, locally bounded spaces are sometimes called $ p $-
normed spaces. The class of all Banach spaces is exactly the intersection of the class of locally convex $ F $-
spaces and the class of complete locally bounded spaces. The dual space of a locally bounded space can be trivial, i.e. consist only of a zero functional.
Locally pseudo-convex $ F $-spaces.
They are like $ B _ {o} $-
spaces, but with $ p $-
homogeneous semi-norms instead of homogeneous semi-norms (the exponent $ p $
may depend upon the semi-norm). This class contains the class of locally convex $ F $-
spaces and the class of complete locally bounded spaces.
Examples of $ F $-spaces.
The space $ S [ 0,1 ] $
of all Lebesgue-measurable functions on the unit interval with the topology of convergence in measure (asymptotic convergence) is a space of type $ F $.
Its topology can be given by the $ F $-
norm
$$
\left \| x \right \| = \int\limits _ { 0 } ^ { 1 } { {
\frac{\left | {x ( t ) } \right | }{1 + \left | {x ( t ) } \right | }
} } {dt } .
$$
This space is not locally pseudo-convex.
The space $ C ^ \infty [ 0,1 ] $
of all infinitely differentiable functions on the unit interval with the topology of unform convergence of functions together with all derivatives is a $ B _ {o} $-
space. Its topology can be given by semi-norms
$$
\left \| x \right \| _ {n} =
$$
$$
=
\max \left \{ \max _ {[ 0,1 ] } \left | {x ( t ) } \right | , \max _ {[ 0,1 ] } \left | {x ^ \prime ( t ) } \right | \dots \max _ {[ 0,1 ] } \left | {x ^ {( n - 1 ) } ( t ) } \right | \right \} .
$$
The space $ {\mathcal E} $
of all entire functions of one complex variable with the topology of uniform convergence on compact subsets of the complex plane is a $ B _ {o} $-
space. Its topology can be given by the semi-norms
$$
\left \| x \right \| _ {n} = \max _ {\left | \zeta \right | \leq n } \left | {x ( \zeta ) } \right | .
$$
The space $ L _ {p} [ 0,1 ] $
on the unit interval, $ 0 < p < 1 $,
is a complete locally bounded space with trivial dual. Its topology can be given by $ \| x \| _ {p} = \int _ {0} ^ {1} {| {x ( t ) } | ^ {p} } {dt } $(
its discrete analogue, the space $ l _ {p} $
of all sequences summable with the $ p $-
th power, has a non-trivial dual).
The space $ L ^ {0 + } [ 0,1 ] = \cap _ {0 < p \leq 1 } L _ {p} [ 0,1 ] $
with the semi-norms $ \| x \| _ {p _ {n} } $,
where $ 0 < p _ {n} \rightarrow 0 $,
is a locally pseudo-convex space of type $ F $
which is not locally bounded.
General facts about $ F $-spaces.
A linear operator between $ F $
spaces is continuous if and only if it maps bounded sets onto bounded sets.
Let $ {\mathcal A} $
be a family of continuous linear operators from an $ F $-
space $ X $
to an $ F $-
space space $ Y $.
If the set $ \{ {Tx } : {T \in {\mathcal A} } \} $
is bounded in $ Y $
for each fixed $ x \in X $,
then $ {\mathcal A} $
is equicontinuous (the Mazur–Orlicz theorem; it is a theorem of Banach–Steinhaus type, cf. also Banach–Steinhaus theorem).
If $ X $
and $ Y $
are $ F $-
spaces and $ ( T _ {n} ) $
is a sequence of continuous linear operators from $ X $
to $ Y $
such that for each $ x \in X $
the limit $ Tx = {\lim\limits } _ {n} T _ {n} x $
exists, then $ x \mapsto Tx $
is a continuous linear operator from $ X $
to $ Y $.
The image of an open set under a continuous linear operator between $ F $-
spaces is open (the open mapping theorem).
The graph of a linear operator $ T $
between $ F $-
spaces is closed if and only if $ T $
is continuous (the closed graph theorem).
If a one-to-one continuous linear operator maps an $ F $-
space onto an $ F $-
space, then the inverse operator is continuous (the inverse operator theorem).
A separately continuous bilinear mapping between $ F $-
spaces is jointly continuous (cf. also Continuous function).
References
[a1] | S. Banach, "Théorie des opérations linéaires" , Warszawa (1932) |
[a2] | N. Bourbaki, "Espaces vectoriels topologiques" , Paris (1981) pp. Chapt. 1–5 |
[a3] | N. Dunford, J.T. Schwartz, "Linear operators" , I. General theory , Wiley, reprint (1988) |
[a4] | A. Grothendieck, "Topological vector spaces" , New York (1973) |
[a5] | H. Jarchow, "Locally convex spaces" , Teubner (1981) |
[a6] | G. Köthe, "Topological vector spaces" , I–II , New York (1969–1979) |
[a7] | S. Rolewicz, "Metric linear spaces" , PWN & Reidel (1972) |
[a8] | H.H. Schaefer, "Topological vector spaces" , Springer (1971) |
[a9] | L. Waelbroeck, "Topological vector spaces and algebras" , Lecture Notes in Mathematics , 230 , Springer (1971) |
[a10] | A. Wilansky, "Modern methods in topological vector spaces" , New York (1978) |