Difference between revisions of "Steenrod reduced power"
(Importing text file) |
(latex details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0875501.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/S087/S.0807550 Steenrod reduced power | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A stable [[Cohomology operation|cohomology operation]] $ {\mathcal P} ^ {i} $, | |
+ | $ i \geq 0 $, | ||
+ | of the type $ ( \mathbf Z _ {p} , \mathbf Z _ {p} ) $, | ||
+ | where $ p $ | ||
+ | is a fixed odd prime number, which is the analogue modulo $ p $ | ||
+ | of the [[Steenrod square|Steenrod square]], and which is a homomorphism | ||
− | 1) | + | $$ |
+ | {\mathcal P} ^ {i} : H ^ {n} ( X, Y; \mathbf Z _ {p} ) \rightarrow H ^ {n+2i}( p- 1) ( X, Y; \mathbf Z _ {p} ), | ||
+ | $$ | ||
− | + | defined for every pair of topological spaces $ ( X, Y) $ | |
+ | and any integer $ n $. | ||
+ | The Steenrod reduced powers possess the following properties (apart from naturality $ f ^ { * } {\mathcal P} ^ {i} = {\mathcal P} ^ {i} f ^ { * } $ | ||
+ | and stability $ \delta {\mathcal P} ^ {i} = {\mathcal P} ^ {i} \delta $, | ||
+ | where $ \delta : H ^ {q} ( Y; \mathbf Z _ {p} ) \rightarrow H ^ {q+1} ( X, Y; \mathbf Z _ {p} ) $ | ||
+ | is the coboundary homomorphism): | ||
− | + | 1) $ {\mathcal P} ^ {0} = \mathop{\rm id} $; | |
− | 4) (Cartan's formula) | + | 2) if $ 2i = \mathop{\rm dim} x $, |
+ | then $ {\mathcal P} ^ {i} x = x ^ {p} $; | ||
+ | |||
+ | 3) if $ 2i > \mathop{\rm dim} x $, | ||
+ | then $ {\mathcal P} ^ {i} x = 0 $; | ||
+ | |||
+ | 4) (Cartan's formula) $ {\mathcal P} ^ {i} ( x, y) = \sum_{j=0}^ {i} ( {\mathcal P} ^ {i} x) \cdot ( {\mathcal P} ^ {i-j} x) $; | ||
5) (Adem's relation) | 5) (Adem's relation) | ||
− | + | $$ | |
+ | {\mathcal P} ^ {a} {\mathcal P} ^ {b} = \sum_{t=0}^ { [v/p]} (- 1) ^ {a+t} \left ( \begin{array}{c} | ||
+ | ( p- 1)( b- t)- 1 \\ | ||
+ | a- pt | ||
+ | \end{array} | ||
+ | \right ) _ {p} {\mathcal P} ^ {a+b-t} | ||
+ | $$ | ||
− | if < | + | if $ a < pb $, |
− | + | $$ | |
+ | {\mathcal P} ^ {a} \beta {\mathcal P} ^ {b} = \ | ||
+ | \sum_{t=0}^ { [ } a/p] (- 1) ^ {a+t} \left ( \begin{array}{c} | ||
+ | ( p- 1)( b- t) \\ | ||
+ | a- pt | ||
+ | \end{array} | ||
+ | \right | ||
+ | ) _ {p} \beta {\mathcal P} ^ {a+b-t} {\mathcal P} ^ {t} + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum_{t=0}^ { [(a- 1)/p]}(- 1) ^ {a+t-1} \left ( | ||
+ | \begin{array}{c} | ||
+ | ( p- 1)( b- t)- 1 \\ | ||
+ | a- pt- 1 | ||
+ | \end{array} | ||
+ | \right ) _ {p} {\mathcal P} ^ {a+b-t} \beta {\mathcal P} ^ {t} | ||
+ | $$ | ||
− | if | + | if $ a \leq pb $, |
+ | where $ \beta $ | ||
+ | is the Bockstein homomorphism associated with the short exact sequence of coefficient groups $ 0 \rightarrow \mathbf Z _ {p} \rightarrow \mathbf Z _ {p ^ {2} } \rightarrow \mathbf Z _ {p} \rightarrow 0 $, | ||
+ | while $ ( \cdot ) _ {p} $ | ||
+ | are the binomial coefficients reduced modulo $ p $. | ||
− | These properties are analogous to the corresponding properties of Steenrod squares, whereby the operation | + | These properties are analogous to the corresponding properties of Steenrod squares, whereby the operation $ Sq ^ {2i} $ |
+ | corresponds to the operation $ {\mathcal P} ^ {i} $. | ||
+ | Just as for Steenrod squares, the multiplication in 4) can be considered to be both exterior ( $ \times $- | ||
+ | multiplication) and interior ( $ \cup $- | ||
+ | multiplication). Steenrod reduced powers commute with [[Suspension|suspension]] and [[Transgression|transgression]]. | ||
− | The properties 1)–3) uniquely characterize | + | The properties 1)–3) uniquely characterize $ {\mathcal P} ^ {i} $, |
+ | and can be constructed in the same way as Steenrod squares using the minimal acyclic free chain $ \mathbf Z _ {p} $- | ||
+ | complex $ W $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> ''Matematika'' , '''5''' : 2 (1961) pp. 3–11; 11–30; 30–49; 50–102</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> ''Matematika'' , '''5''' : 2 (1961) pp. 3–11; 11–30; 30–49; 50–102</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
For more references see [[Steenrod algebra|Steenrod algebra]]. | For more references see [[Steenrod algebra|Steenrod algebra]]. |
Latest revision as of 19:54, 18 January 2024
A stable cohomology operation $ {\mathcal P} ^ {i} $,
$ i \geq 0 $,
of the type $ ( \mathbf Z _ {p} , \mathbf Z _ {p} ) $,
where $ p $
is a fixed odd prime number, which is the analogue modulo $ p $
of the Steenrod square, and which is a homomorphism
$$ {\mathcal P} ^ {i} : H ^ {n} ( X, Y; \mathbf Z _ {p} ) \rightarrow H ^ {n+2i}( p- 1) ( X, Y; \mathbf Z _ {p} ), $$
defined for every pair of topological spaces $ ( X, Y) $ and any integer $ n $. The Steenrod reduced powers possess the following properties (apart from naturality $ f ^ { * } {\mathcal P} ^ {i} = {\mathcal P} ^ {i} f ^ { * } $ and stability $ \delta {\mathcal P} ^ {i} = {\mathcal P} ^ {i} \delta $, where $ \delta : H ^ {q} ( Y; \mathbf Z _ {p} ) \rightarrow H ^ {q+1} ( X, Y; \mathbf Z _ {p} ) $ is the coboundary homomorphism):
1) $ {\mathcal P} ^ {0} = \mathop{\rm id} $;
2) if $ 2i = \mathop{\rm dim} x $, then $ {\mathcal P} ^ {i} x = x ^ {p} $;
3) if $ 2i > \mathop{\rm dim} x $, then $ {\mathcal P} ^ {i} x = 0 $;
4) (Cartan's formula) $ {\mathcal P} ^ {i} ( x, y) = \sum_{j=0}^ {i} ( {\mathcal P} ^ {i} x) \cdot ( {\mathcal P} ^ {i-j} x) $;
5) (Adem's relation)
$$ {\mathcal P} ^ {a} {\mathcal P} ^ {b} = \sum_{t=0}^ { [v/p]} (- 1) ^ {a+t} \left ( \begin{array}{c} ( p- 1)( b- t)- 1 \\ a- pt \end{array} \right ) _ {p} {\mathcal P} ^ {a+b-t} $$
if $ a < pb $,
$$ {\mathcal P} ^ {a} \beta {\mathcal P} ^ {b} = \ \sum_{t=0}^ { [ } a/p] (- 1) ^ {a+t} \left ( \begin{array}{c} ( p- 1)( b- t) \\ a- pt \end{array} \right ) _ {p} \beta {\mathcal P} ^ {a+b-t} {\mathcal P} ^ {t} + $$
$$ + \sum_{t=0}^ { [(a- 1)/p]}(- 1) ^ {a+t-1} \left ( \begin{array}{c} ( p- 1)( b- t)- 1 \\ a- pt- 1 \end{array} \right ) _ {p} {\mathcal P} ^ {a+b-t} \beta {\mathcal P} ^ {t} $$
if $ a \leq pb $, where $ \beta $ is the Bockstein homomorphism associated with the short exact sequence of coefficient groups $ 0 \rightarrow \mathbf Z _ {p} \rightarrow \mathbf Z _ {p ^ {2} } \rightarrow \mathbf Z _ {p} \rightarrow 0 $, while $ ( \cdot ) _ {p} $ are the binomial coefficients reduced modulo $ p $.
These properties are analogous to the corresponding properties of Steenrod squares, whereby the operation $ Sq ^ {2i} $ corresponds to the operation $ {\mathcal P} ^ {i} $. Just as for Steenrod squares, the multiplication in 4) can be considered to be both exterior ( $ \times $- multiplication) and interior ( $ \cup $- multiplication). Steenrod reduced powers commute with suspension and transgression.
The properties 1)–3) uniquely characterize $ {\mathcal P} ^ {i} $, and can be constructed in the same way as Steenrod squares using the minimal acyclic free chain $ \mathbf Z _ {p} $- complex $ W $.
References
[1] | N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962) |
[2] | Matematika , 5 : 2 (1961) pp. 3–11; 11–30; 30–49; 50–102 |
Comments
For more references see Steenrod algebra.
Steenrod reduced power. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steenrod_reduced_power&oldid=15254