|
|
| (4 intermediate revisions by 2 users not shown) |
| Line 1: |
Line 1: |
| − | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652902.png" />-linear form, on a unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652904.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652905.png" />''
| + | <!-- |
| | + | m0652902.png |
| | + | $#A+1 = 77 n = 0 |
| | + | $#C+1 = 77 : ~/encyclopedia/old_files/data/M065/M.0605290 Multilinear form, |
| | + | Automatically converted into TeX, above some diagnostics. |
| | + | Please remove this comment and the {{TEX|auto}} line below, |
| | + | if TeX found to be correct. |
| | + | --> |
| | | | |
| − | A [[Multilinear mapping|multilinear mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652906.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652907.png" /> is a commutative associative ring with a unit, cf. [[Associative rings and algebras|Associative rings and algebras]]). A multilinear form is also called a multilinear function (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m0652909.png" />-linear function). Since a multilinear form is a particular case of a multilinear mapping, one can speak of symmetric, skew-symmetric, alternating, symmetrized, and skew-symmetrized multilinear forms. For example, the [[Determinant|determinant]] of a square [[Matrix|matrix]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529010.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529011.png" /> is a skew-symmetrized (and therefore alternating) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529012.png" />-linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529013.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529014.png" />-linear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529015.png" /> form an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529016.png" /> module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529017.png" />, which is naturally isomorphic to the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529018.png" /> of all linear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529019.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529020.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529021.png" />), one speaks of bilinear forms (cf. [[Bilinear form|Bilinear form]]) (respectively, trilinear forms).
| + | {{TEX|auto}} |
| | + | {{TEX|done}} |
| | | | |
| − | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529022.png" />-linear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529023.png" /> are closely related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529024.png" />-times covariant tensors, i.e. elements of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529025.png" />. More precisely, there is a linear mapping
| + | '' $ n $- |
| | + | linear form, on a unitary $ A $- |
| | + | module $ E $'' |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529026.png" /></td> </tr></table>
| + | A [[Multilinear mapping|multilinear mapping]] $ E ^ {n} \rightarrow A $( |
| | + | here $ A $ |
| | + | is a commutative associative ring with a unit, cf. [[Associative rings and algebras|Associative rings and algebras]]). A multilinear form is also called a multilinear function ( $ n $- |
| | + | linear function). Since a multilinear form is a particular case of a multilinear mapping, one can speak of symmetric, skew-symmetric, alternating, symmetrized, and skew-symmetrized multilinear forms. For example, the [[Determinant|determinant]] of a square [[Matrix|matrix]] of order $ n $ |
| | + | over $ A $ |
| | + | is a skew-symmetrized (and therefore alternating) $ n $- |
| | + | linear form on $ A ^ {n} $. |
| | + | The $ n $- |
| | + | linear forms on $ E $ |
| | + | form an $ A $ |
| | + | module $ L _ {n} ( E, A) $, |
| | + | which is naturally isomorphic to the module $ (\otimes ^ {n} E) ^ {*} $ |
| | + | of all linear forms on $ \otimes ^ {n} E $. |
| | + | In the case $ n = 2 $( |
| | + | $ n = 3 $), |
| | + | one speaks of bilinear forms (cf. [[Bilinear form|Bilinear form]]) (respectively, trilinear forms). |
| | + | |
| | + | The $ n $- |
| | + | linear forms on $ E $ |
| | + | are closely related to $ n $- |
| | + | times covariant tensors, i.e. elements of the module $ T ^ {n} ( E ^ {*} ) = \otimes ^ {n} E ^ {*} $. |
| | + | More precisely, there is a linear mapping |
| | + | |
| | + | $$ |
| | + | \gamma _ {n} : T ^ {n} ( E ^ {*} ) \rightarrow L _ {n} ( E, A), |
| | + | $$ |
| | | | |
| | such that | | such that |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529027.png" /></td> </tr></table>
| + | $$ |
| | + | \gamma _ {n} ( u _ {1} \otimes \dots \otimes u _ {n} )( x _ {1} \dots |
| | + | x _ {n} ) = u _ {1} ( x _ {1} ) \dots u _ {n} ( x _ {n} ) |
| | + | $$ |
| | | | |
| − | for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529029.png" />. If the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529030.png" /> is free (cf. [[Free module|Free module]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529031.png" /> is injective, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529032.png" /> is also finitely generated, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529033.png" /> is bijective. In particular, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529034.png" />-linear forms on a finite-dimensional vector space over a field are identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529035.png" />-times covariant tensors. | + | for any $ u _ {i} \in E ^ {*} $, |
| | + | $ x _ {i} \in E $. |
| | + | If the module $ E $ |
| | + | is free (cf. [[Free module|Free module]]), $ \gamma $ |
| | + | is injective, while if $ E $ |
| | + | is also finitely generated, $ \gamma $ |
| | + | is bijective. In particular, the $ n $- |
| | + | linear forms on a finite-dimensional vector space over a field are identified with $ n $- |
| | + | times covariant tensors. |
| | | | |
| − | For any forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529037.png" /> one can define the tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529038.png" /> via the formula | + | For any forms $ u \in L _ {n} ( E, A) $, |
| | + | $ v \in L _ {m} ( E, A) $ |
| | + | one can define the tensor product $ u \otimes v \in L _ {n+m} ( E, A) $ |
| | + | via the formula |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529039.png" /></td> </tr></table>
| + | $$ |
| | + | u \otimes v ( x _ {1} \dots x _ {n+m} ) = \ |
| | + | u( x _ {1} \dots x _ {n} ) v( x _ {n+1} \dots x _ {n+m} ). |
| | + | $$ |
| | | | |
| − | For symmetrized multilinear forms (cf. [[Multilinear mapping|Multilinear mapping]]), a symmetrical product is also defined: | + | For symmetrized multilinear forms (cf. [[Multilinear mapping]]), a symmetrical product is also defined: |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529040.png" /></td> </tr></table>
| + | $$ |
| | + | ( \sigma _ {n} u) \lor ( \sigma _ {m} v) = \sigma _ {n+m} ( u \otimes v), |
| | + | $$ |
| | | | |
| | while for skew-symmetrized multilinear forms there is an exterior product | | while for skew-symmetrized multilinear forms there is an exterior product |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529041.png" /></td> </tr></table>
| + | $$ |
| | + | ( \alpha _ {n} u) \wedge ( \alpha _ {m} v) = \ |
| | + | \alpha _ {n+m} ( u \otimes v). |
| | + | $$ |
| | | | |
| − | These operations are extended to the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529044.png" />, to the module of symmetrized forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529045.png" /> and to the module of skew-symmetrized forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529046.png" /> respectively, which transforms them into associative algebras with a unit. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529047.png" /> is a finitely-generated free module, then the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529048.png" /> define an isomorphism of the [[Tensor algebra|tensor algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529049.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529050.png" /> and the [[Exterior algebra|exterior algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529051.png" /> on the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529052.png" />, which in that case coincides with the algebra of alternating forms. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529053.png" /> is a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529054.png" />, then there is also an isomorphism of the symmetric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529055.png" /> on the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529056.png" /> of symmetric forms. | + | These operations are extended to the module $ L _ \star ( E, A) = \oplus_{n=0} ^ \infty L( E, A) $, |
| | + | where $ L _ {0} ( E, A) = A $, |
| | + | $ L _ {1} ( E, A) = E ^ {*} $, |
| | + | to the module of symmetrized forms $ L _ \sigma ( E, A) = \oplus_{n=0} ^ \infty \sigma _ {n} L _ {n} ( E, A) $ |
| | + | and to the module of skew-symmetrized forms $ L _ \alpha ( E, A) = \oplus_{n=0} ^ \infty \alpha _ {n} L _ {n} ( E, A) $ |
| | + | respectively, which transforms them into associative algebras with a unit. If $ E $ |
| | + | is a finitely-generated free module, then the mappings $ \gamma _ {n} $ |
| | + | define an isomorphism of the [[Tensor algebra|tensor algebra]] $ T( E ^ {*} ) $ |
| | + | on $ L _ \star ( E, A) $ |
| | + | and the [[Exterior algebra|exterior algebra]] $ \Lambda ( E ^ {*} ) $ |
| | + | on the algebra $ L _ \alpha ( E, A) $, |
| | + | which in that case coincides with the algebra of alternating forms. If $ A $ |
| | + | is a field of characteristic $ 0 $, |
| | + | then there is also an isomorphism of the symmetric algebra $ S( E ^ {*} ) $ |
| | + | on the algebra $ L _ \sigma ( E, A) $ |
| | + | of symmetric forms. |
| | | | |
| − | Any multilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529057.png" /> corresponds to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529058.png" />, given by the formula | + | Any multilinear form $ u \in L _ {n} ( E, A) $ |
| | + | corresponds to a function $ \omega _ {n} ( u): E \rightarrow A $, |
| | + | given by the formula |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529059.png" /></td> </tr></table>
| + | $$ |
| | + | \omega _ {n} ( u)( x) = u( x \dots x),\ x \in E. |
| | + | $$ |
| | | | |
| − | Functions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529060.png" /> are called forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529062.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529063.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529064.png" /> is a free module, then in coordinates relative to an arbitrary basis they are given by homogeneous polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529065.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529066.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529067.png" />) one obtains quadratic (cubic) forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529068.png" /> (cf. [[Quadratic form|Quadratic form]]; [[Cubic form|Cubic form]]). The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529069.png" /> completely determines the symmetrization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529070.png" /> of a form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529071.png" />: | + | Functions of the form $ \omega _ {n} ( u) $ |
| | + | are called forms of degree $ n $ |
| | + | on $ E $; |
| | + | if $ E $ |
| | + | is a free module, then in coordinates relative to an arbitrary basis they are given by homogeneous polynomials of degree $ n $. |
| | + | In the case $ n = 2 $( |
| | + | $ n= 3 $) |
| | + | one obtains quadratic (cubic) forms on $ E $( |
| | + | cf. [[Quadratic form|Quadratic form]]; [[Cubic form|Cubic form]]). The form $ F = \omega ( u) $ |
| | + | completely determines the symmetrization $ \sigma _ {n} u $ |
| | + | of a form $ u \in L _ {n} ( E, A) $: |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529072.png" /></td> </tr></table>
| + | $$ |
| | + | \sigma _ {n} u( x _ {1} \dots x _ {n} ) = |
| | + | $$ |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529073.png" /></td> </tr></table>
| + | $$ |
| | + | = \ |
| | + | \sum _ {r=1} ^ { n } (- 1) ^ {n-r} \sum _ {i _ {1} < \dots < i _ {r} } F( x _ {i _ {1} } + \dots + x _ {i _ {r} } ). |
| | + | $$ |
| | | | |
| − | In particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529074.png" />, | + | In particular, for $ n= 2 $, |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529075.png" /></td> </tr></table>
| + | $$ |
| | + | ( \sigma _ {2} u)( x, y) = \ |
| | + | F( x+ y) - F( x) - F( y). |
| | + | $$ |
| | | | |
| − | The mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529077.png" /> define a homomorphism of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529078.png" /> on the algebra of all polynomial functions (cf. [[Polynomial function|Polynomial function]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529079.png" />, which is an isomorphism if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529080.png" /> is a finitely-generated free module over an infinite integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065290/m06529081.png" />. | + | The mappings $ \gamma _ {n} $ |
| | + | and $ \omega _ {n} $ |
| | + | define a homomorphism of the algebra $ S( E ^ {*} ) $ |
| | + | on the algebra of all polynomial functions (cf. [[Polynomial function|Polynomial function]]) $ P( E) $, |
| | + | which is an isomorphism if $ E $ |
| | + | is a finitely-generated free module over an infinite integral domain $ A $. |
| | | | |
| | ====References==== | | ====References==== |
| − | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR></table> | + | <table> |
| | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR> |
| | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR> |
| | + | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR> |
| | + | </table> |
$ n $-
linear form, on a unitary $ A $-
module $ E $
A multilinear mapping $ E ^ {n} \rightarrow A $(
here $ A $
is a commutative associative ring with a unit, cf. Associative rings and algebras). A multilinear form is also called a multilinear function ( $ n $-
linear function). Since a multilinear form is a particular case of a multilinear mapping, one can speak of symmetric, skew-symmetric, alternating, symmetrized, and skew-symmetrized multilinear forms. For example, the determinant of a square matrix of order $ n $
over $ A $
is a skew-symmetrized (and therefore alternating) $ n $-
linear form on $ A ^ {n} $.
The $ n $-
linear forms on $ E $
form an $ A $
module $ L _ {n} ( E, A) $,
which is naturally isomorphic to the module $ (\otimes ^ {n} E) ^ {*} $
of all linear forms on $ \otimes ^ {n} E $.
In the case $ n = 2 $(
$ n = 3 $),
one speaks of bilinear forms (cf. Bilinear form) (respectively, trilinear forms).
The $ n $-
linear forms on $ E $
are closely related to $ n $-
times covariant tensors, i.e. elements of the module $ T ^ {n} ( E ^ {*} ) = \otimes ^ {n} E ^ {*} $.
More precisely, there is a linear mapping
$$
\gamma _ {n} : T ^ {n} ( E ^ {*} ) \rightarrow L _ {n} ( E, A),
$$
such that
$$
\gamma _ {n} ( u _ {1} \otimes \dots \otimes u _ {n} )( x _ {1} \dots
x _ {n} ) = u _ {1} ( x _ {1} ) \dots u _ {n} ( x _ {n} )
$$
for any $ u _ {i} \in E ^ {*} $,
$ x _ {i} \in E $.
If the module $ E $
is free (cf. Free module), $ \gamma $
is injective, while if $ E $
is also finitely generated, $ \gamma $
is bijective. In particular, the $ n $-
linear forms on a finite-dimensional vector space over a field are identified with $ n $-
times covariant tensors.
For any forms $ u \in L _ {n} ( E, A) $,
$ v \in L _ {m} ( E, A) $
one can define the tensor product $ u \otimes v \in L _ {n+m} ( E, A) $
via the formula
$$
u \otimes v ( x _ {1} \dots x _ {n+m} ) = \
u( x _ {1} \dots x _ {n} ) v( x _ {n+1} \dots x _ {n+m} ).
$$
For symmetrized multilinear forms (cf. Multilinear mapping), a symmetrical product is also defined:
$$
( \sigma _ {n} u) \lor ( \sigma _ {m} v) = \sigma _ {n+m} ( u \otimes v),
$$
while for skew-symmetrized multilinear forms there is an exterior product
$$
( \alpha _ {n} u) \wedge ( \alpha _ {m} v) = \
\alpha _ {n+m} ( u \otimes v).
$$
These operations are extended to the module $ L _ \star ( E, A) = \oplus_{n=0} ^ \infty L( E, A) $,
where $ L _ {0} ( E, A) = A $,
$ L _ {1} ( E, A) = E ^ {*} $,
to the module of symmetrized forms $ L _ \sigma ( E, A) = \oplus_{n=0} ^ \infty \sigma _ {n} L _ {n} ( E, A) $
and to the module of skew-symmetrized forms $ L _ \alpha ( E, A) = \oplus_{n=0} ^ \infty \alpha _ {n} L _ {n} ( E, A) $
respectively, which transforms them into associative algebras with a unit. If $ E $
is a finitely-generated free module, then the mappings $ \gamma _ {n} $
define an isomorphism of the tensor algebra $ T( E ^ {*} ) $
on $ L _ \star ( E, A) $
and the exterior algebra $ \Lambda ( E ^ {*} ) $
on the algebra $ L _ \alpha ( E, A) $,
which in that case coincides with the algebra of alternating forms. If $ A $
is a field of characteristic $ 0 $,
then there is also an isomorphism of the symmetric algebra $ S( E ^ {*} ) $
on the algebra $ L _ \sigma ( E, A) $
of symmetric forms.
Any multilinear form $ u \in L _ {n} ( E, A) $
corresponds to a function $ \omega _ {n} ( u): E \rightarrow A $,
given by the formula
$$
\omega _ {n} ( u)( x) = u( x \dots x),\ x \in E.
$$
Functions of the form $ \omega _ {n} ( u) $
are called forms of degree $ n $
on $ E $;
if $ E $
is a free module, then in coordinates relative to an arbitrary basis they are given by homogeneous polynomials of degree $ n $.
In the case $ n = 2 $(
$ n= 3 $)
one obtains quadratic (cubic) forms on $ E $(
cf. Quadratic form; Cubic form). The form $ F = \omega ( u) $
completely determines the symmetrization $ \sigma _ {n} u $
of a form $ u \in L _ {n} ( E, A) $:
$$
\sigma _ {n} u( x _ {1} \dots x _ {n} ) =
$$
$$
= \
\sum _ {r=1} ^ { n } (- 1) ^ {n-r} \sum _ {i _ {1} < \dots < i _ {r} } F( x _ {i _ {1} } + \dots + x _ {i _ {r} } ).
$$
In particular, for $ n= 2 $,
$$
( \sigma _ {2} u)( x, y) = \
F( x+ y) - F( x) - F( y).
$$
The mappings $ \gamma _ {n} $
and $ \omega _ {n} $
define a homomorphism of the algebra $ S( E ^ {*} ) $
on the algebra of all polynomial functions (cf. Polynomial function) $ P( E) $,
which is an isomorphism if $ E $
is a finitely-generated free module over an infinite integral domain $ A $.
References
| [1] | N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) |
| [2] | N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) |
| [3] | S. Lang, "Algebra" , Addison-Wesley (1984) |