Difference between revisions of "Whitehead homomorphism"
m (ce) |
m (→References) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0977802.png | ||
+ | $#A+1 = 71 n = 4 | ||
+ | $#C+1 = 71 : ~/encyclopedia/old_files/data/W097/W.0907780 Whitehead homomorphism, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ J $- | |
+ | homomorphism'' | ||
− | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> | + | A homomorphism from the [[Stable homotopy group|stable homotopy group]] of the spectrum of $ \mathop{\rm SO} $ |
+ | to the stable homotopy group of the spectrum of the sphere $ S ^ {0} $, | ||
+ | defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ | ||
+ | determines a mapping $ ( J \phi ) : S ^ {m} \times S ^ {q-1} \rightarrow S ^ {q-1} $, | ||
+ | which can be extended to a mapping $ J \phi : S ^ {m} \times E ^ {q} \rightarrow E _ {+} ^ {q} $ | ||
+ | of $ S ^ {m} \times E ^ {q} $ | ||
+ | to the upper hemi-sphere of $ S ^ {q} $. | ||
+ | There is also an extension $ J \phi : E ^ {m+1} \times S ^ {q-1} \rightarrow E _ {-} ^ {q} $ | ||
+ | to the lower hemi-sphere of $ S ^ {q} $, | ||
+ | and this determines a mapping $ J \phi : S ^ {m+q} \rightarrow S ^ {q} $. | ||
+ | This construction gives a mapping of homotopy classes, and so defines a homomorphism $ J: \pi _ {m} ^ {S} ( \mathop{\rm SO} ) \rightarrow \pi _ {m} ^ {S} ( S ^ {0} ) $, | ||
+ | called the Whitehead group. | ||
+ | |||
+ | This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, $ \pi _ {n} ( S ^ {r} ) \neq 0 $, | ||
+ | for the following values of $ n $ | ||
+ | and $ r $: | ||
+ | |||
+ | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ n $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">14</td> <td colname="3" style="background-color:white;" colspan="1">14</td> <td colname="4" style="background-color:white;" colspan="1"> $ 8k $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ 16k+ 2 $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ 8k+ 1 $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ 16k+ 3 $ | ||
+ | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ r $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1">7</td> <td colname="3" style="background-color:white;" colspan="1">4</td> <td colname="4" style="background-color:white;" colspan="1"> $ 4k $ | ||
+ | </td> <td colname="5" style="background-color:white;" colspan="1"> $ 8k $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1"> $ 4k+ 1 $ | ||
+ | </td> <td colname="7" style="background-color:white;" colspan="1"> $ 8k+ 1 $ | ||
+ | </td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
− | The stable homotopy groups | + | The stable homotopy groups $ \pi _ {m} ^ {S} ( \mathop{\rm SO} ) $ |
+ | are described by the Bott periodicity theorem [[#References|[2]]]: | ||
− | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> | + | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ m \mathop{\rm mod} 8 $ |
+ | </td> <td colname="2" style="background-color:white;" colspan="1">0</td> <td colname="3" style="background-color:white;" colspan="1">1</td> <td colname="4" style="background-color:white;" colspan="1">2</td> <td colname="5" style="background-color:white;" colspan="1">3</td> <td colname="6" style="background-color:white;" colspan="1">4</td> <td colname="7" style="background-color:white;" colspan="1">5</td> <td colname="8" style="background-color:white;" colspan="1">6</td> <td colname="9" style="background-color:white;" colspan="1">7</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \pi _ {m} ^ {S} ( \mathop{\rm SO} ) $ | ||
+ | </td> <td colname="2" style="background-color:white;" colspan="1"> $ \mathbf Z _ {2} $ | ||
+ | </td> <td colname="3" style="background-color:white;" colspan="1"> $ \mathbf Z _ {2} $ | ||
+ | </td> <td colname="4" style="background-color:white;" colspan="1">0</td> <td colname="5" style="background-color:white;" colspan="1"> $ \mathbf Z $ | ||
+ | </td> <td colname="6" style="background-color:white;" colspan="1">0</td> <td colname="7" style="background-color:white;" colspan="1">0</td> <td colname="8" style="background-color:white;" colspan="1">0</td> <td colname="9" style="background-color:white;" colspan="1"> $ \mathbf Z $ | ||
+ | </td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
− | The image of the Whitehead homomorphism has been completely calculated (cf. [[#References|[4]]], [[#References|[5]]]): for | + | The image of the Whitehead homomorphism has been completely calculated (cf. [[#References|[4]]], [[#References|[5]]]): for $ m \equiv 0 $( |
+ | $ \mathop{\rm mod} 8 $) | ||
+ | and $ m> 0 $ | ||
+ | the Whitehead group is a monomorphism and its image is a direct summand in the group $ \pi _ {m} ^ {S} ( S ^ {0} ) $; | ||
+ | for $ m\equiv 1 $( | ||
+ | $ \mathop{\rm mod} 8 $) | ||
+ | and $ m> 1 $ | ||
+ | the Whitehead group is a monomorphism on a direct summand of $ \pi _ {m} ^ {S} ( S ^ {0} ) $; | ||
+ | for $ m= 4s- 1 $ | ||
+ | the image of the Whitehead group is the cyclic group of order $ \tau ( 2s) $, | ||
+ | giving a direct summand in $ \pi _ {m} ^ {S} ( S ^ {0} ) $, | ||
+ | where $ \tau ( 2s) $ | ||
+ | is the denominator of the irreducible fraction $ B _ {s} /( 4s) $, | ||
+ | $ B _ {s} $ | ||
+ | being the $ s $- | ||
+ | th Bernoulli number (cf. [[Bernoulli numbers|Bernoulli numbers]]). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G.W. Whitehead, "On the homotopy groups of spheres and rotation groups" ''Ann. of Math.'' , '''43''' (1942) pp. 634–640 {{MR|0007107}} {{ZBL|0060.41105}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G.W. Whitehead, "A generalization of the Hopf invariant" ''Ann. of Math.'' , '''51''' (1950) pp. 192–237 {{MR|0041435}} {{ZBL|0045.44202}} {{ZBL|0041.51903}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Bott, "The stable homotopy of the classical groups" ''Ann. of Math.'' , '''70''' (1959) pp. 313–337 {{MR|0110104}} {{ZBL|0129.15601}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> J.F. Adams, "On the groups | + | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G.W. Whitehead, "On the homotopy groups of spheres and rotation groups" ''Ann. of Math.'' , '''43''' (1942) pp. 634–640 {{MR|0007107}} {{ZBL|0060.41105}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G.W. Whitehead, "A generalization of the Hopf invariant" ''Ann. of Math.'' , '''51''' (1950) pp. 192–237 {{MR|0041435}} {{ZBL|0045.44202}} {{ZBL|0041.51903}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Bott, "The stable homotopy of the classical groups" ''Ann. of Math.'' , '''70''' (1959) pp. 313–337 {{MR|0110104}} {{ZBL|0129.15601}} </TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> J.F. Adams, "On the groups $J(X)$ - I" ''Topology'' , '''2''' (1963) pp. 181–195</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> J.F. Adams, "On the groups $J(X)$ - II" ''Topology'' , '''3''' (1965) pp. 137–171</TD></TR><TR><TD valign="top">[3c]</TD> <TD valign="top"> J.F. Adams, "On the groups $J(X)$ - III" ''Topology'' , '''3''' (1965) pp. 193–222</TD></TR><TR><TD valign="top">[3d]</TD> <TD valign="top"> J.F. Adams, "On the groups $J(X)$ - IV" ''Topology'' , '''5''' (1966) pp. 21–71</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.C. Becker, D.H. Gottlieb, "The transfer map and fiber bundles" ''Topology'' , '''14''' (1975) pp. 1–12 {{MR|0377873}} {{ZBL|0306.55017}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978) {{MR|0505692}} {{ZBL|0398.55008}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Given a mapping | + | Given a mapping $ f: X \times Y \rightarrow Z $ |
+ | of topological spaces, quite generally the Hopf construction gives a mapping | ||
− | + | $$ | |
+ | \Gamma f : X \star Y \rightarrow SZ | ||
+ | $$ | ||
− | from the [[Join|join]] | + | from the [[Join|join]] $ X \star Y $ |
+ | of $ X $ | ||
+ | and $ Y $ | ||
+ | to the [[Suspension|suspension]] $ SZ $ | ||
+ | of $ Z $, | ||
+ | as follows. Consider | ||
− | + | $$ | |
+ | f \times \mathop{\rm id} : X \times Y \times I \rightarrow Z \times I,\ \ | ||
+ | ( x, y, t) \mapsto ( f( x, y), t). | ||
+ | $$ | ||
− | The join | + | The join $ X \star Y $ |
+ | is a certain quotient space of $ X \times Y \times Z $ | ||
+ | and $ SZ $ | ||
+ | is a quotient space of $ Z \times I $. | ||
+ | An elementary check shows that $ f \times \mathop{\rm id} $ | ||
+ | is compatible with the corresponding equivalence relations, and hence defines a mapping $ \Gamma f $ | ||
+ | as desired. Recall that $ S ^ {m} \star S ^ {n} \cong S ^ {m+n+1} $, | ||
+ | cf. [[Join]]. | ||
− | Now, let | + | Now, let $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ |
+ | be a mapping; each element of $ \mathop{\rm SO} ( q) $ | ||
+ | induces a mapping $ S ^ {q-1} \rightarrow S ^ {q-1} $ | ||
+ | of the $ ( q- 1) $- | ||
+ | sphere into itself. Hence $ \phi $ | ||
+ | induces a mapping | ||
− | + | $$ | |
+ | \widetilde \phi : S ^ {m} \times S ^ {q-1} \rightarrow S ^ {q-1} . | ||
+ | $$ | ||
− | Applying the Hopf construction to | + | Applying the Hopf construction to $ \widetilde \phi $ |
+ | gives the mapping $ J \phi $: | ||
− | + | $$ | |
+ | S ^ {m+q} \cong S ^ {m} \star S ^ {q-1} \mathop \rightarrow \limits ^ { {\Gamma \widetilde \phi }} \ | ||
+ | S( S ^ {q-1} ) \cong S ^ {q} . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 334 {{MR|0402714}} {{ZBL|0322.55001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 480ff {{MR|0385836}} {{ZBL|0305.55001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 334 {{MR|0402714}} {{ZBL|0322.55001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 480ff {{MR|0385836}} {{ZBL|0305.55001}} </TD></TR></table> |
Latest revision as of 20:31, 16 January 2024
$ J $-
homomorphism
A homomorphism from the stable homotopy group of the spectrum of $ \mathop{\rm SO} $ to the stable homotopy group of the spectrum of the sphere $ S ^ {0} $, defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ determines a mapping $ ( J \phi ) : S ^ {m} \times S ^ {q-1} \rightarrow S ^ {q-1} $, which can be extended to a mapping $ J \phi : S ^ {m} \times E ^ {q} \rightarrow E _ {+} ^ {q} $ of $ S ^ {m} \times E ^ {q} $ to the upper hemi-sphere of $ S ^ {q} $. There is also an extension $ J \phi : E ^ {m+1} \times S ^ {q-1} \rightarrow E _ {-} ^ {q} $ to the lower hemi-sphere of $ S ^ {q} $, and this determines a mapping $ J \phi : S ^ {m+q} \rightarrow S ^ {q} $. This construction gives a mapping of homotopy classes, and so defines a homomorphism $ J: \pi _ {m} ^ {S} ( \mathop{\rm SO} ) \rightarrow \pi _ {m} ^ {S} ( S ^ {0} ) $, called the Whitehead group.
This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, $ \pi _ {n} ( S ^ {r} ) \neq 0 $, for the following values of $ n $ and $ r $:
<tbody> </tbody>
|
The stable homotopy groups $ \pi _ {m} ^ {S} ( \mathop{\rm SO} ) $ are described by the Bott periodicity theorem [2]:
<tbody> </tbody>
|
The image of the Whitehead homomorphism has been completely calculated (cf. [4], [5]): for $ m \equiv 0 $( $ \mathop{\rm mod} 8 $) and $ m> 0 $ the Whitehead group is a monomorphism and its image is a direct summand in the group $ \pi _ {m} ^ {S} ( S ^ {0} ) $; for $ m\equiv 1 $( $ \mathop{\rm mod} 8 $) and $ m> 1 $ the Whitehead group is a monomorphism on a direct summand of $ \pi _ {m} ^ {S} ( S ^ {0} ) $; for $ m= 4s- 1 $ the image of the Whitehead group is the cyclic group of order $ \tau ( 2s) $, giving a direct summand in $ \pi _ {m} ^ {S} ( S ^ {0} ) $, where $ \tau ( 2s) $ is the denominator of the irreducible fraction $ B _ {s} /( 4s) $, $ B _ {s} $ being the $ s $- th Bernoulli number (cf. Bernoulli numbers).
References
[1a] | G.W. Whitehead, "On the homotopy groups of spheres and rotation groups" Ann. of Math. , 43 (1942) pp. 634–640 MR0007107 Zbl 0060.41105 |
[1b] | G.W. Whitehead, "A generalization of the Hopf invariant" Ann. of Math. , 51 (1950) pp. 192–237 MR0041435 Zbl 0045.44202 Zbl 0041.51903 |
[2] | R. Bott, "The stable homotopy of the classical groups" Ann. of Math. , 70 (1959) pp. 313–337 MR0110104 Zbl 0129.15601 |
[3a] | J.F. Adams, "On the groups $J(X)$ - I" Topology , 2 (1963) pp. 181–195 |
[3b] | J.F. Adams, "On the groups $J(X)$ - II" Topology , 3 (1965) pp. 137–171 |
[3c] | J.F. Adams, "On the groups $J(X)$ - III" Topology , 3 (1965) pp. 193–222 |
[3d] | J.F. Adams, "On the groups $J(X)$ - IV" Topology , 5 (1966) pp. 21–71 |
[4] | J.C. Becker, D.H. Gottlieb, "The transfer map and fiber bundles" Topology , 14 (1975) pp. 1–12 MR0377873 Zbl 0306.55017 |
[5] | J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978) MR0505692 Zbl 0398.55008 |
Comments
Given a mapping $ f: X \times Y \rightarrow Z $ of topological spaces, quite generally the Hopf construction gives a mapping
$$ \Gamma f : X \star Y \rightarrow SZ $$
from the join $ X \star Y $ of $ X $ and $ Y $ to the suspension $ SZ $ of $ Z $, as follows. Consider
$$ f \times \mathop{\rm id} : X \times Y \times I \rightarrow Z \times I,\ \ ( x, y, t) \mapsto ( f( x, y), t). $$
The join $ X \star Y $ is a certain quotient space of $ X \times Y \times Z $ and $ SZ $ is a quotient space of $ Z \times I $. An elementary check shows that $ f \times \mathop{\rm id} $ is compatible with the corresponding equivalence relations, and hence defines a mapping $ \Gamma f $ as desired. Recall that $ S ^ {m} \star S ^ {n} \cong S ^ {m+n+1} $, cf. Join.
Now, let $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ be a mapping; each element of $ \mathop{\rm SO} ( q) $ induces a mapping $ S ^ {q-1} \rightarrow S ^ {q-1} $ of the $ ( q- 1) $- sphere into itself. Hence $ \phi $ induces a mapping
$$ \widetilde \phi : S ^ {m} \times S ^ {q-1} \rightarrow S ^ {q-1} . $$
Applying the Hopf construction to $ \widetilde \phi $ gives the mapping $ J \phi $:
$$ S ^ {m+q} \cong S ^ {m} \star S ^ {q-1} \mathop \rightarrow \limits ^ { {\Gamma \widetilde \phi }} \ S( S ^ {q-1} ) \cong S ^ {q} . $$
References
[a1] | B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 334 MR0402714 Zbl 0322.55001 |
[a2] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 480ff MR0385836 Zbl 0305.55001 |
Whitehead homomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_homomorphism&oldid=34362