Namespaces
Variants
Actions

Difference between revisions of "Operator ergodic theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A general name for theorems on the limit of means along an unboundedly lengthening  "time interval"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683601.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683602.png" />, for the powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683603.png" /> of a [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683604.png" /> acting on a Banach space (or even on a topological vector space, see [[#References|[5]]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683605.png" />, or for a [[One-parameter semi-group|one-parameter semi-group]] of linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683606.png" /> acting on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683607.png" /> (cf. also [[Ergodic theorem|Ergodic theorem]]). In the latter case one can also examine the limit of means along an unboundedly diminishing time interval (local ergodic theorems, see [[#References|[5]]], [[#References|[6]]]; one also speaks of  "ergodicity at zero" , see [[#References|[1]]]). Means can be understood in various senses in the same way as in the theory of summation of series. The most frequently used means are the Cesàro means
+
<!--
 +
o0683601.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/O068/O.0608360 Operator ergodic theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683608.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
{{MSC|47A35}}
 +
 
 +
[[Category:General theory of linear operators]]
 +
 
 +
A general name for theorems on the limit of means along an unboundedly lengthening "time interval" $  n = 0 \dots N $,
 +
or  $  0 \leq  t \leq  T $,
 +
for the powers  $  \{ A  ^ {n} \} $
 +
of a [[Linear operator|linear operator]]  $  A $
 +
acting on a Banach space (or even on a topological vector space, see {{Cite|KSS}})  $  E $,
 +
or for a [[One-parameter semi-group|one-parameter semi-group]] of linear operators  $  \{ A _ {t} \} $
 +
acting on  $  E $(
 +
cf. also [[Ergodic theorem|Ergodic theorem]]). In the latter case one can also examine the limit of means along an unboundedly diminishing time interval (local ergodic theorems, see {{Cite|KSS}}, {{Cite|K}}; one also speaks of "ergodicity at zero" , see {{Cite|HP}}). Means can be understood in various senses in the same way as in the theory of summation of series. The most frequently used means are the Cesàro means
 +
 
 +
$$
 +
\overline{A}\; _ {N}  =
 +
\frac{1}{N}
 +
\sum _{n=0} ^ {N-1} A  ^ {n}
 +
$$
  
 
or
 
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o0683609.png" /></td> </tr></table>
+
$$
 +
\overline{A}\; _ {T}  =
 +
\frac{1}{T}
 +
\int\limits _ { 0 } ^ { T }  A _ {t}  dt
 +
$$
  
and the Abel means, [[#References|[1]]],
+
and the Abel means, {{Cite|HP}},
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836010.png" /></td> </tr></table>
+
$$
 +
\overline{A}\; _  \theta  = ( 1- \theta ) \sum _{n=0} ^  \infty  \theta ^ {n} A  ^ {n} ,\ \
 +
| \theta | < 1 ,
 +
$$
  
 
or
 
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836011.png" /></td> </tr></table>
+
$$
 +
\overline{A}\; _  \lambda  = \lambda \int\limits _ { 0 } ^  \infty  e ^ {-\lambda t } A _ {t}  dt.
 +
$$
  
The conditions of ergodic theorems automatically ensure the convergence of these infinite series or integrals; under these conditions, although the Abel means are formed by using all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836012.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836013.png" />, the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836014.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836015.png" /> in a finite period of time, unboundedly increasing when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836016.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836017.png" />), play a major part. The limit of the means (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836018.png" />, etc.) can be understood in various senses: In the strong or weak [[Operator topology|operator topology]] (statistical ergodic theorems, i.e. the [[Von Neumann ergodic theorem|von Neumann ergodic theorem]] — historically the first operator ergodic theorem — and its generalizations), in the uniform operator topology (uniform ergodic theorems, see [[#References|[1]]], [[#References|[2]]], [[#References|[3]]]), while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836019.png" /> is a function space on a measure space, then also in the sense of almost-everywhere convergence of the means <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836020.png" />, etc., where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836021.png" /> (individual ergodic theorems, i.e. the [[Birkhoff ergodic theorem|Birkhoff ergodic theorem]] and its generalizations; see, for example, the [[Ornstein–Chacon ergodic theorem|Ornstein–Chacon ergodic theorem]]; these are not always called operator ergodic theorems, however). Some operator ergodic theorems compare the force of various of the above-mentioned variants with each other, establishing that, from the existence of limits of means in one sense, it follows that limits exist in another sense [[#References|[1]]]. Some theorems speak not of the limit of means, but of the limit of the ratios of two means (e.g. the Ornstein–Chacon theorem).
+
The conditions of ergodic theorems automatically ensure the convergence of these infinite series or integrals; under these conditions, although the Abel means are formed by using all $  A  ^ {n} $
 +
or $  A _ {t} $,  
 +
the values of $  A  ^ {n} $
 +
or $  A _ {t} $
 +
in a finite period of time, unboundedly increasing when $  \theta \rightarrow 1 $(
 +
or $  \lambda \rightarrow 0 $),  
 +
play a major part. The limit of the means ( $  \lim\limits _ {N \rightarrow \infty }  \overline{A}\; _ {N} $,  
 +
etc.) can be understood in various senses: In the strong or weak [[Operator topology|operator topology]] (statistical ergodic theorems, i.e. the [[Von Neumann ergodic theorem|von Neumann ergodic theorem]] — historically the first operator ergodic theorem — and its generalizations), in the uniform operator topology (uniform ergodic theorems, see {{Cite|HP}}, {{Cite|DS}}, {{Cite|N}}), while if $  E $
 +
is a function space on a measure space, then also in the sense of almost-everywhere convergence of the means $  \overline{A}\; _ {N} \phi $,  
 +
etc., where $  \phi \in E $(
 +
individual ergodic theorems, i.e. the [[Birkhoff ergodic theorem|Birkhoff ergodic theorem]] and its generalizations; see, for example, the [[Ornstein–Chacon ergodic theorem|Ornstein–Chacon ergodic theorem]]; these are not always called operator ergodic theorems, however). Some operator ergodic theorems compare the force of various of the above-mentioned variants with each other, establishing that, from the existence of limits of means in one sense, it follows that limits exist in another sense {{Cite|HP}}. Some theorems speak not of the limit of means, but of the limit of the ratios of two means (e.g. the Ornstein–Chacon theorem).
  
There are also operator ergodic theorems for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o068/o068360/o06836022.png" />-parameter and even more general semi-groups.
+
There are also operator ergodic theorems for $  n $-
 +
parameter and even more general semi-groups.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Hille,   R.S. Phillips,   "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Dunford,   J.T. Schwartz,   "Linear operators. General theory" , '''1''' , Wiley (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Neveu,   "Mathematical foundations of the calculus of probabilities" , Holden-Day (1965) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"A.M. Vershik,   S.A. Yuzvinskii,   "Dynamical systems with invariant measure" ''Progress in Math.'' , '''8''' (1970) pp. 151–215 ''Itogi Nauk. Mat. Anal.'' , '''967''' (1969) pp. 133–187</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.B. Katok,   Ya.G. Sinai,   A.M. Stepin,   "Theory of dynamical systems and general transformation groups with invariant measure" ''J. Soviet Math.'' , '''7''' : 2 (1977) pp. 974–1041 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13''' (1975) pp. 129–262</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  U. Krengel,   "Recent progress in ergodic theorems" ''Astérisque'' , '''50''' (1977) pp. 151–192</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"U. Krengel,   "Ergodic theorems" , de Gruyter (1985)</TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|HP}}|| E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}}
 +
|-
 +
|valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Wiley (1988) {{MR|1009164}} {{MR|1009163}} {{MR|1009162}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|N}}|| J. Neveu, "Mathematical foundations of the calculus of probabilities" , Holden-Day (1965) (Translated from French) {{MR|0198505}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|VY}}|| A.M. Vershik, S.A. Yuzvinskii, "Dynamical systems with invariant measure" ''Progress in Math.'' , '''8''' (1970) pp. 151–215 ''Itogi Nauk. Mat. Anal.'' , '''967''' (1969) pp. 133–187 {{MR|0286981}} {{ZBL|0252.28006}}
 +
|-
 +
|valign="top"|{{Ref|KSS}}|| A.B. Katok, Ya.G. Sinai, A.M. Stepin, "Theory of dynamical systems and general transformation groups with invariant measure" ''J. Soviet Math.'' , '''7''' : 2 (1977) pp. 974–1041 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13''' (1975) pp. 129–262 {{MR|0584389}} {{ZBL|0399.28011}}
 +
|-
 +
|valign="top"|{{Ref|K}}|| U. Krengel, "Recent progress in ergodic theorems" ''Astérisque'' , '''50''' (1977) pp. 151–192 {{MR|486418}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|K2}}|| U. Krengel, "Ergodic theorems" , de Gruyter (1985) {{MR|0797411}} {{ZBL|0575.28009}}
 +
|}

Latest revision as of 16:32, 6 January 2024


2020 Mathematics Subject Classification: Primary: 47A35 [MSN][ZBL]

A general name for theorems on the limit of means along an unboundedly lengthening "time interval" $ n = 0 \dots N $, or $ 0 \leq t \leq T $, for the powers $ \{ A ^ {n} \} $ of a linear operator $ A $ acting on a Banach space (or even on a topological vector space, see [KSS]) $ E $, or for a one-parameter semi-group of linear operators $ \{ A _ {t} \} $ acting on $ E $( cf. also Ergodic theorem). In the latter case one can also examine the limit of means along an unboundedly diminishing time interval (local ergodic theorems, see [KSS], [K]; one also speaks of "ergodicity at zero" , see [HP]). Means can be understood in various senses in the same way as in the theory of summation of series. The most frequently used means are the Cesàro means

$$ \overline{A}\; _ {N} = \frac{1}{N} \sum _{n=0} ^ {N-1} A ^ {n} $$

or

$$ \overline{A}\; _ {T} = \frac{1}{T} \int\limits _ { 0 } ^ { T } A _ {t} dt $$

and the Abel means, [HP],

$$ \overline{A}\; _ \theta = ( 1- \theta ) \sum _{n=0} ^ \infty \theta ^ {n} A ^ {n} ,\ \ | \theta | < 1 , $$

or

$$ \overline{A}\; _ \lambda = \lambda \int\limits _ { 0 } ^ \infty e ^ {-\lambda t } A _ {t} dt. $$

The conditions of ergodic theorems automatically ensure the convergence of these infinite series or integrals; under these conditions, although the Abel means are formed by using all $ A ^ {n} $ or $ A _ {t} $, the values of $ A ^ {n} $ or $ A _ {t} $ in a finite period of time, unboundedly increasing when $ \theta \rightarrow 1 $( or $ \lambda \rightarrow 0 $), play a major part. The limit of the means ( $ \lim\limits _ {N \rightarrow \infty } \overline{A}\; _ {N} $, etc.) can be understood in various senses: In the strong or weak operator topology (statistical ergodic theorems, i.e. the von Neumann ergodic theorem — historically the first operator ergodic theorem — and its generalizations), in the uniform operator topology (uniform ergodic theorems, see [HP], [DS], [N]), while if $ E $ is a function space on a measure space, then also in the sense of almost-everywhere convergence of the means $ \overline{A}\; _ {N} \phi $, etc., where $ \phi \in E $( individual ergodic theorems, i.e. the Birkhoff ergodic theorem and its generalizations; see, for example, the Ornstein–Chacon ergodic theorem; these are not always called operator ergodic theorems, however). Some operator ergodic theorems compare the force of various of the above-mentioned variants with each other, establishing that, from the existence of limits of means in one sense, it follows that limits exist in another sense [HP]. Some theorems speak not of the limit of means, but of the limit of the ratios of two means (e.g. the Ornstein–Chacon theorem).

There are also operator ergodic theorems for $ n $- parameter and even more general semi-groups.

References

[HP] E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) MR0089373 Zbl 0392.46001 Zbl 0033.06501
[DS] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Wiley (1988) MR1009164 MR1009163 MR1009162
[N] J. Neveu, "Mathematical foundations of the calculus of probabilities" , Holden-Day (1965) (Translated from French) MR0198505
[VY] A.M. Vershik, S.A. Yuzvinskii, "Dynamical systems with invariant measure" Progress in Math. , 8 (1970) pp. 151–215 Itogi Nauk. Mat. Anal. , 967 (1969) pp. 133–187 MR0286981 Zbl 0252.28006
[KSS] A.B. Katok, Ya.G. Sinai, A.M. Stepin, "Theory of dynamical systems and general transformation groups with invariant measure" J. Soviet Math. , 7 : 2 (1977) pp. 974–1041 Itogi Nauk. i Tekhn. Mat. Anal. , 13 (1975) pp. 129–262 MR0584389 Zbl 0399.28011
[K] U. Krengel, "Recent progress in ergodic theorems" Astérisque , 50 (1977) pp. 151–192 MR486418
[K2] U. Krengel, "Ergodic theorems" , de Gruyter (1985) MR0797411 Zbl 0575.28009
How to Cite This Entry:
Operator ergodic theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Operator_ergodic_theorem&oldid=11719
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article