Namespaces
Variants
Actions

Difference between revisions of "Lazard set"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
(2 intermediate revisions by one other user not shown)
Line 13: Line 13:
 
A subset  $  T $
 
A subset  $  T $
 
of the [[Free magma|free magma]]  $  M ( A ) $,  
 
of the [[Free magma|free magma]]  $  M ( A ) $,  
i.e. the free non-associative structure over  $  A $(
+
i.e. the free non-associative structure over  $  A $ (cf. also [[Associative rings and algebras|Associative rings and algebras]]). The elements of  $  M ( A ) $
cf. also [[Associative rings and algebras|Associative rings and algebras]]). The elements of  $  M ( A ) $
+
correspond to completely bracketed words over  $  A $ (or rooted planar binary trees with leaves labelled by generators  $  a _ {1} , a _ {2} , \dots $;  
correspond to completely bracketed words over  $  A $(
 
or rooted planar binary trees with leaves labelled by generators  $  a _ {1} , a _ {2} , \dots $;  
 
 
cf. also [[Binary tree|Binary tree]]). These are defined recursively as brackets  $  t = [ t  ^  \prime  , t ^ {\prime \prime } ] $
 
cf. also [[Binary tree|Binary tree]]). These are defined recursively as brackets  $  t = [ t  ^  \prime  , t ^ {\prime \prime } ] $
 
where  $  t  ^  \prime  , t ^ {\prime \prime } $
 
where  $  t  ^  \prime  , t ^ {\prime \prime } $
Line 28: Line 26:
  
 
$$  
 
$$  
[ \dots [ [ s, t ] , t ] \dots t ]  ( p \textrm{ closing  brackets } ) .
+
[ \dots [ [ s, t ] , t ] \dots t ]  \qquad (p \textrm{ closing  brackets} ) .
 
$$
 
$$
  
Consider trees  $  t _ {0} \dots t _ {n} $
+
Consider trees  $  t _ {0}, \dots, t _ {n} $
and subsets  $  T _ {0} \dots T _ {n + 1 }  \subset  M ( A ) $
+
and subsets  $  T _ {0}, \dots, T _ {n + 1 }  \subset  M ( A ) $
 
defined as follows:
 
defined as follows:
  
Line 38: Line 36:
 
\left .
 
\left .
  
\begin{array}{cttt}
+
\begin{array}{c}
t _ {0} \in T _ {0} = A, &t _ {1} \in T _ {1} = \left \{ {[ tt _ {0}  ^ {p} ] } : {p \geq  0, t \in T _ {0} \setminus  t _ {0} } \right \} , &\dots  \dots  &t _ {n} \in T _ {n} =
+
t _ {0} \in T _ {0} = A, \\
\left \{ {[ tt _ {n - 1 }   ^ {p} ] } : {p \geq 0, t \in T _ {n - 1 }  \setminus  t _ {n - 1 }  } \right \} , \\
+
t _ {1} \in T _ {1} = \left \{ {[ tt _ {0}  ^ {p} ] } : {p \geq  0, t \in T _ {0} \setminus  t _ {0} } \right \} , \\
t _ {1} \in T _ {1} = \left \{ {[ tt _ {0}  ^ {p} ] } : {p \geq  0, t \in T _ {0} \setminus  t _ {0} } \right \} ,  &\dots  \dots  &t _ {n} \in T _ {n} =  
+
   \dots \dots \\
 +
t _ {n} \in T _ {n} =  
 
\left \{ {[ tt _ {n - 1 }  ^ {p} ] } : {p \geq  0, t \in T _ {n - 1 }  \setminus  t _ {n - 1 }  } \right \} ,  \\
 
\left \{ {[ tt _ {n - 1 }  ^ {p} ] } : {p \geq  0, t \in T _ {n - 1 }  \setminus  t _ {n - 1 }  } \right \} ,  \\
 +
T _ {n + 1} =
 +
\left \{ {[ tt _ {n }  ^ {p} ] } : {p \geq  0, t \in T _ {n }  \setminus  t _ {n }  } \right \} ,  \\
 
\end{array}
 
\end{array}
 
   
 
   
Line 62: Line 63:
 
that is, one may associate a [[Lie polynomial|Lie polynomial]]  $  \psi ( t ) $
 
that is, one may associate a [[Lie polynomial|Lie polynomial]]  $  \psi ( t ) $
 
to each element  $  t \in L $
 
to each element  $  t \in L $
of a Lazard set such that the free Lie algebra  $  {\mathcal L} ( A ) $(
+
of a Lazard set such that the free Lie algebra  $  {\mathcal L} ( A ) $ (over  $  A $;  
over  $  A $;  
 
 
cf. [[Lie algebra, free|Lie algebra, free]]) is freely generated (as a module over a commutative ring  $  K $)  
 
cf. [[Lie algebra, free|Lie algebra, free]]) is freely generated (as a module over a commutative ring  $  K $)  
 
by the Lie polynomials  $  \{ {\psi ( t ) } : {t \in L } \} $.  
 
by the Lie polynomials  $  \{ {\psi ( t ) } : {t \in L } \} $.  
Line 81: Line 81:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  X. Viennot,  "Algèbres de Lie libres et monoïdes libres" , ''Lecture Notes in Mathematics'' , '''691''' , Springer  (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Hall,  "A basis for free Lie rings and higher commutators in free groups"  ''Proc. Amer. Math. Soc.'' , '''1'''  (1950)  pp. 57–581</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. Reutenauer,  "Free Lie algebras" , ''London Math. Soc. Monographs New Ser.'' , '''7''' , Oxford Univ. Press  (1993)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  X. Viennot,  "Algèbres de Lie libres et monoïdes libres" , ''Lecture Notes in Mathematics'' , '''691''' , Springer  (1978) {{ZBL|0395.17003}}</TD></TR><TR><TD valign="top">[a2]</TD>
 +
<TD valign="top">  M. Hall,  "A basis for free Lie rings and higher commutators in free groups"  ''Proc. Amer. Math. Soc.'' , '''1'''  (1950)  pp. 57–581</TD></TR><TR><TD valign="top">[a3]</TD>
 +
<TD valign="top">  C. Reutenauer,  "Free Lie algebras" , ''London Math. Soc. Monographs New Ser.'' , '''7''' , Oxford Univ. Press  (1993)</TD></TR>
 +
</table>

Latest revision as of 18:41, 5 October 2023


A subset $ T $ of the free magma $ M ( A ) $, i.e. the free non-associative structure over $ A $ (cf. also Associative rings and algebras). The elements of $ M ( A ) $ correspond to completely bracketed words over $ A $ (or rooted planar binary trees with leaves labelled by generators $ a _ {1} , a _ {2} , \dots $; cf. also Binary tree). These are defined recursively as brackets $ t = [ t ^ \prime , t ^ {\prime \prime } ] $ where $ t ^ \prime , t ^ {\prime \prime } $ are bracketed words of lower weight; bracketed words of weight one correspond to the generators $ a _ {1} , a _ {2} , \dots $. A subset $ E \subset M ( A ) $ is said to be closed, if for each element $ t = [ t ^ \prime , t ^ {\prime \prime } ] \in E $ one has $ t ^ \prime , t ^ {\prime \prime } \in E $. Given two elements $ s, t \in M ( A ) $, one writes $ [ st ^ {p} ] $ to denote the element

$$ [ \dots [ [ s, t ] , t ] \dots t ] \qquad (p \textrm{ closing brackets} ) . $$

Consider trees $ t _ {0}, \dots, t _ {n} $ and subsets $ T _ {0}, \dots, T _ {n + 1 } \subset M ( A ) $ defined as follows:

$$ \tag{a1 } \left . \begin{array}{c} t _ {0} \in T _ {0} = A, \\ t _ {1} \in T _ {1} = \left \{ {[ tt _ {0} ^ {p} ] } : {p \geq 0, t \in T _ {0} \setminus t _ {0} } \right \} , \\ \dots \dots \\ t _ {n} \in T _ {n} = \left \{ {[ tt _ {n - 1 } ^ {p} ] } : {p \geq 0, t \in T _ {n - 1 } \setminus t _ {n - 1 } } \right \} , \\ T _ {n + 1} = \left \{ {[ tt _ {n } ^ {p} ] } : {p \geq 0, t \in T _ {n } \setminus t _ {n } } \right \} , \\ \end{array} \right \} $$

A Lazard set is a subset $ L \subset M ( A ) $ such that for any finite, non-empty and closed subset $ E \subset M ( A ) $ one has:

$$ L \cap E = \{ t _ {0} > \dots > t _ {n} \} $$

for some $ n \geq 0 $, (a1) holds and, moreover, $ T _ {n + 1 } \cap E = \emptyset $.

Lazard sets may be shown to coincide with Hall sets (cf. Hall set). Thus, they give bases of the free Lie algebra over $ A $; that is, one may associate a Lie polynomial $ \psi ( t ) $ to each element $ t \in L $ of a Lazard set such that the free Lie algebra $ {\mathcal L} ( A ) $ (over $ A $; cf. Lie algebra, free) is freely generated (as a module over a commutative ring $ K $) by the Lie polynomials $ \{ {\psi ( t ) } : {t \in L } \} $. Lazard's elimination process may then be phrased as follows: One has the direct sum decomposition (as a module over a commutative ring $ K $):

$$ {\mathcal L} ( A ) = K \psi ( t _ {0} ) \oplus \dots \oplus K \psi ( t _ {n} ) \oplus {\mathcal L} _ {n + 1 } , $$

where $ {\mathcal L} _ {n + 1 } $ is the Lie subalgebra freely generated by $ T _ {n + 1 } $.

Lazard sets were introduced by X. Viennot [a1] in order to unify combinatorial constructions of bases of the free Lie algebra. The Lyndon basis (see Lyndon word) was thought to be of a different nature from the one considered by M. Hall [a2], and generalizations of it were proposed by many authors. Viennot gave a unifying framework for all these constructions. One may present Lazard sets in terms of words, rather than trees in $ M ( A ) $. It can then be shown that a unique tree structure is attached to every word of a Lazard set. Moreover, a Lazard set of words is totally ordered, as is a Lazard set of trees, and it is a complete factorization of the free monoid. That is, every word is a unique non-increasing product of Lazard words. This result makes explicit the link between bases of free Lie algebras and complete factorizations of free monoids.

See also Hall word.

References

[a1] X. Viennot, "Algèbres de Lie libres et monoïdes libres" , Lecture Notes in Mathematics , 691 , Springer (1978) Zbl 0395.17003
[a2] M. Hall, "A basis for free Lie rings and higher commutators in free groups" Proc. Amer. Math. Soc. , 1 (1950) pp. 57–581
[a3] C. Reutenauer, "Free Lie algebras" , London Math. Soc. Monographs New Ser. , 7 , Oxford Univ. Press (1993)
How to Cite This Entry:
Lazard set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lazard_set&oldid=47597
This article was adapted from an original article by G. Melançon (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article