|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108501.png" /> be a [[Field|field]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108502.png" /> be a finite-dimensional [[Vector space|vector space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108503.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108504.png" /> be a [[Finite group|finite group]]. A representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108505.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108506.png" /> is a group [[Homomorphism|homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108507.png" /> (the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108508.png" />-linear automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b1108509.png" />) or, equivalently, a module action of the [[Group algebra|group algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085011.png" /> (the equivalence is defined by: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085012.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085013.png" />; cf. also [[Representation of a group|Representation of a group]]). The character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085014.png" /> is defined by: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085016.png" />. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085017.png" /> for any two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085018.png" />-matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085020.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085021.png" />, one finds that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085022.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085023.png" />, and hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085024.png" /> is a class function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085025.png" />. Equivalent representations have the same character and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085026.png" /> is the sum of the characters of the quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085027.png" />-modules in any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085028.png" />-filtration of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085030.png" /> acts irreducibly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085032.png" /> is said to be an irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085034.png" />-module and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085035.png" /> is said to be an irreducible character.
| + | <!-- |
| + | b1108501.png |
| + | $#A+1 = 159 n = 1 |
| + | $#C+1 = 159 : ~/encyclopedia/old_files/data/B110/B.1100850 Brauer characterization of characters |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085036.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085037.png" /> is said to be a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085039.png" /> is an irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085040.png" />-module; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085041.png" /> is said to be a linear character. There are at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085042.png" /> inequivalent types of irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085043.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085044.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085045.png" /> be the set of irreducible characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085046.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085047.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085048.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085049.png" />-linearly independent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085050.png" /> and every character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085051.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085052.png" /> is a sum of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085053.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085054.png" /> be a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085055.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085056.png" /> be a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085057.png" />. Clearly, the restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085059.png" />, is a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085060.png" /> and induction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085062.png" />, is a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085063.png" /> (cf. also [[Induced representation|Induced representation]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085064.png" /> is a transversal for the right cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085065.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085066.png" />, then, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085067.png" />, | + | Let $ K $ |
| + | be a [[Field|field]], let $ V $ |
| + | be a finite-dimensional [[Vector space|vector space]] over $ K $ |
| + | and let $ G $ |
| + | be a [[Finite group|finite group]]. A representation of $ G $ |
| + | over $ V $ |
| + | is a group [[Homomorphism|homomorphism]] $ X : G \rightarrow { { \mathop{\rm GL} } ( V/K ) } $( |
| + | the group of $ K $- |
| + | linear automorphisms of $ V $) |
| + | or, equivalently, a module action of the [[Group algebra|group algebra]] $ KG $ |
| + | on $ V $( |
| + | the equivalence is defined by: $ g \cdot v = X ( g ) v $ |
| + | for all $ g,v \in V $; |
| + | cf. also [[Representation of a group|Representation of a group]]). The character $ {\chi _ {V} = { \mathop{\rm char} } ( X ) } : G \rightarrow K $ |
| + | is defined by: $ \chi _ {V} ( g ) = { \mathop{\rm tr} } ( X ( g ) ) $ |
| + | for all $ g \in G $. |
| + | Since $ { \mathop{\rm tr} } ( AB ) = { \mathop{\rm tr} } ( BA ) $ |
| + | for any two $ ( n \times n ) $- |
| + | matrices $ A $, |
| + | $ B $ |
| + | over $ K $, |
| + | one finds that $ \chi _ {V} ( ghg ^ {-1 } ) = \chi ( h ) $ |
| + | for all $ g,h \in G $, |
| + | and hence $ \chi _ {V} $ |
| + | is a class function on $ G: \chi _ {V} \in { \mathop{\rm CF} } ( G,K ) $. |
| + | Equivalent representations have the same character and $ \chi _ {V} $ |
| + | is the sum of the characters of the quotient $ KG $- |
| + | modules in any $ KG $- |
| + | filtration of $ V $. |
| + | If $ G $ |
| + | acts irreducibly on $ V/K $, |
| + | then $ V $ |
| + | is said to be an irreducible $ KG $- |
| + | module and $ \chi _ {V} $ |
| + | is said to be an irreducible character. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085068.png" /></td> </tr></table>
| + | If $ { \mathop{\rm dim} } ( V/K ) = 1 $, |
| + | then $ V $ |
| + | is said to be a linear representation of $ G $, |
| + | and $ V $ |
| + | is an irreducible $ KG $- |
| + | module; $ \chi _ {V} $ |
| + | is said to be a linear character. There are at most $ | G | $ |
| + | inequivalent types of irreducible representations of $ G $ |
| + | over $ K $. |
| + | Let $ { \mathop{\rm Irr} } _ {K} ( G ) = \{ \chi _ {1} \dots \chi _ {k} \} $ |
| + | be the set of irreducible characters of $ G $ |
| + | over $ K $. |
| + | Then $ { \mathop{\rm Irr} } _ {K} ( G ) $ |
| + | is $ K $- |
| + | linearly independent in $ { \mathop{\rm CF} } ( G,K ) $ |
| + | and every character of $ G $ |
| + | over $ K $ |
| + | is a sum of elements of $ { \mathop{\rm Irr} } _ {K} ( G ) $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085069.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085071.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085072.png" />.
| + | Let $ H $ |
| + | be a subgroup of $ G $ |
| + | and let $ {\mathcal Y} : H \rightarrow { { \mathop{\rm GL} } ( W/K ) } $ |
| + | be a representation of $ H $. |
| + | Clearly, the restriction to $ H $, |
| + | $ { { \mathop{\rm Res} } _ {H} ^ {G} ( X ) } : H \rightarrow { { \mathop{\rm GL} } ( V/K ) } $, |
| + | is a representation of $ H $ |
| + | and induction to $ G $, |
| + | $ { { \mathop{\rm Ind} } _ {H} ^ {G} ( {\mathcal Y} ) } : G \rightarrow { { \mathop{\rm GL} } ( KG \otimes _ {KH } W ) } $, |
| + | is a representation of $ G $( |
| + | cf. also [[Induced representation|Induced representation]]). If $ T $ |
| + | is a transversal for the right cosets of $ H $ |
| + | in $ G $, |
| + | then, for $ g \in G $, |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085074.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085075.png" />-modules, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085076.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085077.png" />-module defined by "diagonal action" :
| + | $$ |
| + | { \mathop{\rm char} } ( { \mathop{\rm Ind} } _ {H} ^ {G} ( {\mathcal Y} ) ) ( g ) = \sum _ {t \in T } { \mathop{\rm char} } ( {\mathcal Y} ) ^ {o} ( tgt ^ {-1 } ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085078.png" /></td> </tr></table>
| + | where $ { \mathop{\rm char} } ^ {o} ( {\mathcal Y} ) ( u ) = { \mathop{\rm Char} } ( {\mathcal Y} ) ( u ) $ |
| + | if $ u \in H $ |
| + | and $ { \mathop{\rm char} } ^ {o} ( {\mathcal Y} ) ( u ) = 0 $ |
| + | if $ u \in G - H $. |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085081.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085082.png" />.
| + | If $ V $ |
| + | and $ W $ |
| + | are $ KG $- |
| + | modules, then $ V \otimes _ {K} W $ |
| + | is a $ KG $- |
| + | module defined by "diagonal action" : |
| | | |
− | Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085083.png" />, the field of complex numbers. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085084.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085085.png" />-basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085086.png" />. Also, every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085087.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085088.png" /> is completely reducible (i.e., a direct sum of irreducible submodules). Also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085089.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085090.png" /> (complex conjugate) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085091.png" /> is a sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085092.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085093.png" />-th roots of unity for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085094.png" />. Also, there is a non-singular symmetric scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085095.png" /> defined by:
| + | $$ |
| + | g ( v \otimes _ {K} w ) \equiv ( gv ) \otimes _ {K} ( gw ) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085096.png" /></td> </tr></table>
| + | for all $ v \in V $, |
| + | $ w \in W $ |
| + | and $ g \in G $, |
| + | and $ { \mathop{\rm char} } ( V \otimes _ {K} W ) = { \mathop{\rm char} } ( V ) { \mathop{\rm char} } ( W ) $. |
| | | |
− | Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085097.png" /> (the Kronecker delta) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085098.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085099.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850100.png" /> are two finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850101.png" />-modules, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850102.png" /> and hence the isomorphism type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850103.png" /> is determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850104.png" />.
| + | Assume that $ K = \mathbf C $, |
| + | the field of complex numbers. Then $ { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $ |
| + | is a $ \mathbf C $- |
| + | basis of $ { \mathop{\rm CF} } ( G, \mathbf C ) $. |
| + | Also, every $ \mathbf C G $- |
| + | module $ V $ |
| + | is completely reducible (i.e., a direct sum of irreducible submodules). Also, $ \chi _ {V} ( 1 ) = { \mathop{\rm dim} } ( V/ \mathbf C ) $, |
| + | $ \chi ( g ^ {- 1 } ) = {\overline{ {\chi ( g ) }}\; } $( |
| + | complex conjugate) and $ \chi ( g ) $ |
| + | is a sum of $ \chi ( 1 ) $ |
| + | $ | g | $- |
| + | th roots of unity for all $ g \in G $. |
| + | Also, there is a non-singular symmetric scalar product $ {\langle {\cdot, \cdot } \rangle } : { { \mathop{\rm CF} } ( G, \mathbf C ) \times { \mathop{\rm CF} } ( G, \mathbf C ) } \rightarrow \mathbf C $ |
| + | defined by: |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850105.png" /> is a prime integer, then a [[Finite group|finite group]] that is the [[Direct product|direct product]] of a [[Cyclic group|cyclic group]] and a [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850106.png" />-group]] (or equivalently of a cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850107.png" />-group and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850108.png" />-group) is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850110.png" />-elementary group. Any subgroup or quotient of such a group is also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850111.png" />-elementary. A finite group is called elementary if it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850112.png" />-elementary for some prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850113.png" />. It is well-known that each irreducible character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850114.png" /> of an elementary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850115.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850116.png" /> for some subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850117.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850118.png" /> and some linear character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850119.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850120.png" /> (cf. [[#References|[a8]]], Thm. 16).
| + | $$ |
| + | \left \langle {f _ {1} ,f _ {2} } \right \rangle = { |
| + | \frac{1}{\left | G \right | } |
| + | } \sum _ {g \in G } f _ {1} ( g ) f _ {2} ( g ^ {-1 } ) . |
| + | $$ |
| | | |
− | For a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850121.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850122.png" /> be the additive subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850123.png" /> generated by all characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850124.png" />. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850125.png" /> are called virtual or generalized characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850126.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850127.png" /> is a ring and also a free Abelian group with free basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850128.png" />. Clearly,
| + | Here, $ \langle {\chi _ {i} , \chi _ {j} } \rangle = \delta _ {ij } $( |
| + | the Kronecker delta) for all $ \chi _ {i} , \chi _ {j} \in { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $ |
| + | and if $ V $ |
| + | and $ W $ |
| + | are two finite-dimensional $ \mathbf C G $- |
| + | modules, then $ { \mathop{\rm dim} } ( { \mathop{\rm Hom} } _ {\mathbf C G } ( V,W ) / \mathbf C ) = \langle {\chi _ {V} , \chi _ {W} } \rangle $ |
| + | and hence the isomorphism type of $ V $ |
| + | is determined by $ \chi _ {V} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850129.png" /></td> </tr></table>
| + | If $ p $ |
| + | is a prime integer, then a [[Finite group|finite group]] that is the [[Direct product|direct product]] of a [[Cyclic group|cyclic group]] and a [[P-group| $ p $- |
| + | group]] (or equivalently of a cyclic $ p ^ \prime $- |
| + | group and a $ p $- |
| + | group) is called a $ p $- |
| + | elementary group. Any subgroup or quotient of such a group is also $ p $- |
| + | elementary. A finite group is called elementary if it is $ p $- |
| + | elementary for some prime number $ p $. |
| + | It is well-known that each irreducible character $ \chi $ |
| + | of an elementary group $ E $ |
| + | is of the form $ \chi = { \mathop{\rm Ind} } _ {H} ^ {E} ( \psi ) $ |
| + | for some subgroup $ H $ |
| + | of $ E $ |
| + | and some linear character $ \psi $ |
| + | of $ H $( |
| + | cf. [[#References|[a8]]], Thm. 16). |
| + | |
| + | For a finite group $ G $, |
| + | let $ R ( G ) $ |
| + | be the additive subgroup of $ { \mathop{\rm CF} } ( G, \mathbf C ) $ |
| + | generated by all characters of $ G $. |
| + | The elements of $ R ( G ) $ |
| + | are called virtual or generalized characters of $ G $ |
| + | and $ R ( G ) $ |
| + | is a ring and also a free Abelian group with free basis $ { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $. |
| + | Clearly, |
| + | |
| + | $$ |
| + | { \mathop{\rm Irr} } _ {\mathbf C} ( G ) = \left \{ {\varphi \in R ( G ) } : {\left \langle {\varphi, \varphi } \right \rangle =1 \textrm{ and } \varphi ( 1 ) > 0 } \right \} . |
| + | $$ |
| | | |
| In [[#References|[a2]]], R. Brauer proved the following assertions: | | In [[#References|[a2]]], R. Brauer proved the following assertions: |
| | | |
− | 1) Every character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850130.png" /> of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850131.png" /> is a linear combination with integer coefficients of characters induced from linear characters of elementary subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850132.png" />. | + | 1) Every character $ \chi $ |
| + | of a finite group $ G $ |
| + | is a linear combination with integer coefficients of characters induced from linear characters of elementary subgroups of $ G $. |
| | | |
− | Brauer used this result in [[#References|[a2]]] to prove that Artin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850133.png" />-functions of virtual characters have a meromorphic extension to the entire complex plane. Then, in [[#References|[a3]]], he proved that this assertion is equivalent to what is known as the Brauer characterization of characters: | + | Brauer used this result in [[#References|[a2]]] to prove that Artin $ L $- |
| + | functions of virtual characters have a meromorphic extension to the entire complex plane. Then, in [[#References|[a3]]], he proved that this assertion is equivalent to what is known as the Brauer characterization of characters: |
| | | |
− | 2) A class function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850134.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850135.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850136.png" /> for every elementary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850137.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850138.png" />. | + | 2) A class function $ \varphi \in { \mathop{\rm CF} } ( G, \mathbf C ) $ |
| + | lies in $ R ( G ) $ |
| + | if and only if $ { \mathop{\rm Res} } _ {E} ^ {G} ( \varphi ) \in R ( E ) $ |
| + | for every elementary subgroup $ E $ |
| + | of $ G $. |
| | | |
| An immediate consequence (cf. [[#References|[a8]]], Thm 22 and Corollary) is: | | An immediate consequence (cf. [[#References|[a8]]], Thm 22 and Corollary) is: |
| | | |
− | 3) A class function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850139.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850140.png" /> if and only if for each elementary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850141.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850142.png" /> and each linear character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850143.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850144.png" />, | + | 3) A class function $ \varphi \in { \mathop{\rm CF} } ( G, \mathbf C ) $ |
| + | lies in $ R ( G ) $ |
| + | if and only if for each elementary subgroup $ E $ |
| + | of $ G $ |
| + | and each linear character $ \chi $ |
| + | of $ E $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850145.png" /></td> </tr></table>
| + | $$ |
| + | \left \langle { { \mathop{\rm Res} } _ {E} ^ {G} ( \varphi ) , \chi } \right \rangle \in Z. |
| + | $$ |
| | | |
| A sort of converse of 1) was given by J. Green ([[#References|[a8]]], Thm. 23{'''}). There are numerous applications of these results (cf. [[#References|[a7]]], Lemma 8.14; Thm. 8.24, [[#References|[a6]]], V, Hauptsatz 19.11, [[#References|[a8]]], Sect. 11.2; Chap. 12). | | A sort of converse of 1) was given by J. Green ([[#References|[a8]]], Thm. 23{'''}). There are numerous applications of these results (cf. [[#References|[a7]]], Lemma 8.14; Thm. 8.24, [[#References|[a6]]], V, Hauptsatz 19.11, [[#References|[a8]]], Sect. 11.2; Chap. 12). |
Line 45: |
Line 199: |
| Significant improvements to the proofs of these results have been obtained by several authors [[#References|[a4]]], [[#References|[a7]]], Chap. 8, [[#References|[a8]]], Chaps. 10, 11, [[#References|[a6]]], V, Sect. 19. | | Significant improvements to the proofs of these results have been obtained by several authors [[#References|[a4]]], [[#References|[a7]]], Chap. 8, [[#References|[a8]]], Chaps. 10, 11, [[#References|[a6]]], V, Sect. 19. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850146.png" /> denote the free Abelian group whose free basis is given by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850147.png" />-conjugacy classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850148.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850149.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850150.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850151.png" /> is a linear character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850152.png" />. Clearly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850153.png" /> is a character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850154.png" /> and hence induction induces an Abelian group homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850155.png" />, which is surjective by 1). Some interesting recent results in [[#References|[a9]]] and [[#References|[a1]]] give explicit (functorial) splittings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850156.png" /> (i.e., an explicit group homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850157.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850158.png" />). | + | Let $ R _ {+} ( G ) $ |
| + | denote the free Abelian group whose free basis is given by the $ G $- |
| + | conjugacy classes $ ( H, \lambda ) $, |
| + | where $ H $ |
| + | is a subgroup of $ G $ |
| + | and $ \lambda $ |
| + | is a linear character of $ H $. |
| + | Clearly $ { \mathop{\rm Ind} } _ {H} ^ {G} ( \lambda ) $ |
| + | is a character of $ G $ |
| + | and hence induction induces an Abelian group homomorphism $ {\mathcal I} : {R _ {+} ( G ) } \rightarrow {R ( G ) } $, |
| + | which is surjective by 1). Some interesting recent results in [[#References|[a9]]] and [[#References|[a1]]] give explicit (functorial) splittings of $ {\mathcal I} $( |
| + | i.e., an explicit group homomorphism $ {\mathcal J} : {R ( G ) } \rightarrow {R _ {+} ( G ) } $ |
| + | such that $ {\mathcal I} \cdot {\mathcal J} = { \mathop{\rm id} } _ {R ( G ) } $). |
| | | |
− | Clearly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850159.png" /> is the [[Grothendieck group|Grothendieck group]] of the category of finitely generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850160.png" />-modules. Consequently, 1) can be viewed as proving the surjectivity of the induction mapping from one Grothendieck group into another. By changing the coefficient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850161.png" />, or by considering the modular context, etc., many important analogues of these results emerge, cf. [[#References|[a8]]], Chaps. 12, 16, 17, [[#References|[a5]]], Thm. 2, [[#References|[a10]]]. | + | Clearly, $ R ( G ) $ |
| + | is the [[Grothendieck group|Grothendieck group]] of the category of finitely generated $ \mathbf C G $- |
| + | modules. Consequently, 1) can be viewed as proving the surjectivity of the induction mapping from one Grothendieck group into another. By changing the coefficient ring $ \mathbf C $, |
| + | or by considering the modular context, etc., many important analogues of these results emerge, cf. [[#References|[a8]]], Chaps. 12, 16, 17, [[#References|[a5]]], Thm. 2, [[#References|[a10]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Boltje, "A canonical Brauer induction formula" ''Asterisque'' , '''181/2''' (1990) pp. 31–59</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brauer, "On Artin's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b110850162.png" />-series with general group characters" ''Ann. of Math.'' , '''48''' (1947) pp. 502–514</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Brauer, "A characterization of the characters of a group of finite order" ''Ann. of Math.'' , '''57''' (1953) pp. 357–377</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R. Brauer, J. Tate, "On the characters of finite groups" ''Ann. of Math.'' , '''62''' (1955) pp. 1–7</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Broué, "Sur l'induction des modules indecomposables et la projectraité relative" ''Math. Z.'' , '''149''' (1976) pp. 227–245</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Huppert, "Endliche Gruppen" , '''I''' , Springer (1967) pp. Chapt. V</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> I.M. Isaacs, "Character theory of finite groups" , Acad. Press (1976)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J.-P. Serre, "Linear representations of finite groups" , Springer (1977) (Translated from French)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Snaith, "Explicit Brauer induction" ''Invent. Math.'' , '''94''' (1988) pp. 455–478</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> X. Zhou, "On the decomposition map of Grothendieck groups" ''Math. Z.'' , '''206''' (1991) pp. 533–534</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Boltje, "A canonical Brauer induction formula" ''Asterisque'' , '''181/2''' (1990) pp. 31–59</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brauer, "On Artin's L-series with general group characters" ''Ann. of Math.'' , '''48''' (1947) pp. 502–514</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Brauer, "A characterization of the characters of a group of finite order" ''Ann. of Math.'' , '''57''' (1953) pp. 357–377</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R. Brauer, J. Tate, "On the characters of finite groups" ''Ann. of Math.'' , '''62''' (1955) pp. 1–7</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Broué, "Sur l'induction des modules indécomposables et la projectivité relative" ''Math. Z.'' , '''149''' (1976) pp. 227–245</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Huppert, "Endliche Gruppen" , '''I''' , Springer (1967) pp. Chapt. V</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> I.M. Isaacs, "Character theory of finite groups" , Acad. Press (1976)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J.-P. Serre, "Linear representations of finite groups" , Springer (1977) (Translated from French)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Snaith, "Explicit Brauer induction" ''Invent. Math.'' , '''94''' (1988) pp. 455–478</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> X. Zhou, "On the decomposition map of Grothendieck groups" ''Math. Z.'' , '''206''' (1991) pp. 533–534</TD></TR> |
| + | </table> |
Let $ K $
be a field, let $ V $
be a finite-dimensional vector space over $ K $
and let $ G $
be a finite group. A representation of $ G $
over $ V $
is a group homomorphism $ X : G \rightarrow { { \mathop{\rm GL} } ( V/K ) } $(
the group of $ K $-
linear automorphisms of $ V $)
or, equivalently, a module action of the group algebra $ KG $
on $ V $(
the equivalence is defined by: $ g \cdot v = X ( g ) v $
for all $ g,v \in V $;
cf. also Representation of a group). The character $ {\chi _ {V} = { \mathop{\rm char} } ( X ) } : G \rightarrow K $
is defined by: $ \chi _ {V} ( g ) = { \mathop{\rm tr} } ( X ( g ) ) $
for all $ g \in G $.
Since $ { \mathop{\rm tr} } ( AB ) = { \mathop{\rm tr} } ( BA ) $
for any two $ ( n \times n ) $-
matrices $ A $,
$ B $
over $ K $,
one finds that $ \chi _ {V} ( ghg ^ {-1 } ) = \chi ( h ) $
for all $ g,h \in G $,
and hence $ \chi _ {V} $
is a class function on $ G: \chi _ {V} \in { \mathop{\rm CF} } ( G,K ) $.
Equivalent representations have the same character and $ \chi _ {V} $
is the sum of the characters of the quotient $ KG $-
modules in any $ KG $-
filtration of $ V $.
If $ G $
acts irreducibly on $ V/K $,
then $ V $
is said to be an irreducible $ KG $-
module and $ \chi _ {V} $
is said to be an irreducible character.
If $ { \mathop{\rm dim} } ( V/K ) = 1 $,
then $ V $
is said to be a linear representation of $ G $,
and $ V $
is an irreducible $ KG $-
module; $ \chi _ {V} $
is said to be a linear character. There are at most $ | G | $
inequivalent types of irreducible representations of $ G $
over $ K $.
Let $ { \mathop{\rm Irr} } _ {K} ( G ) = \{ \chi _ {1} \dots \chi _ {k} \} $
be the set of irreducible characters of $ G $
over $ K $.
Then $ { \mathop{\rm Irr} } _ {K} ( G ) $
is $ K $-
linearly independent in $ { \mathop{\rm CF} } ( G,K ) $
and every character of $ G $
over $ K $
is a sum of elements of $ { \mathop{\rm Irr} } _ {K} ( G ) $.
Let $ H $
be a subgroup of $ G $
and let $ {\mathcal Y} : H \rightarrow { { \mathop{\rm GL} } ( W/K ) } $
be a representation of $ H $.
Clearly, the restriction to $ H $,
$ { { \mathop{\rm Res} } _ {H} ^ {G} ( X ) } : H \rightarrow { { \mathop{\rm GL} } ( V/K ) } $,
is a representation of $ H $
and induction to $ G $,
$ { { \mathop{\rm Ind} } _ {H} ^ {G} ( {\mathcal Y} ) } : G \rightarrow { { \mathop{\rm GL} } ( KG \otimes _ {KH } W ) } $,
is a representation of $ G $(
cf. also Induced representation). If $ T $
is a transversal for the right cosets of $ H $
in $ G $,
then, for $ g \in G $,
$$
{ \mathop{\rm char} } ( { \mathop{\rm Ind} } _ {H} ^ {G} ( {\mathcal Y} ) ) ( g ) = \sum _ {t \in T } { \mathop{\rm char} } ( {\mathcal Y} ) ^ {o} ( tgt ^ {-1 } ) ,
$$
where $ { \mathop{\rm char} } ^ {o} ( {\mathcal Y} ) ( u ) = { \mathop{\rm Char} } ( {\mathcal Y} ) ( u ) $
if $ u \in H $
and $ { \mathop{\rm char} } ^ {o} ( {\mathcal Y} ) ( u ) = 0 $
if $ u \in G - H $.
If $ V $
and $ W $
are $ KG $-
modules, then $ V \otimes _ {K} W $
is a $ KG $-
module defined by "diagonal action" :
$$
g ( v \otimes _ {K} w ) \equiv ( gv ) \otimes _ {K} ( gw )
$$
for all $ v \in V $,
$ w \in W $
and $ g \in G $,
and $ { \mathop{\rm char} } ( V \otimes _ {K} W ) = { \mathop{\rm char} } ( V ) { \mathop{\rm char} } ( W ) $.
Assume that $ K = \mathbf C $,
the field of complex numbers. Then $ { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $
is a $ \mathbf C $-
basis of $ { \mathop{\rm CF} } ( G, \mathbf C ) $.
Also, every $ \mathbf C G $-
module $ V $
is completely reducible (i.e., a direct sum of irreducible submodules). Also, $ \chi _ {V} ( 1 ) = { \mathop{\rm dim} } ( V/ \mathbf C ) $,
$ \chi ( g ^ {- 1 } ) = {\overline{ {\chi ( g ) }}\; } $(
complex conjugate) and $ \chi ( g ) $
is a sum of $ \chi ( 1 ) $
$ | g | $-
th roots of unity for all $ g \in G $.
Also, there is a non-singular symmetric scalar product $ {\langle {\cdot, \cdot } \rangle } : { { \mathop{\rm CF} } ( G, \mathbf C ) \times { \mathop{\rm CF} } ( G, \mathbf C ) } \rightarrow \mathbf C $
defined by:
$$
\left \langle {f _ {1} ,f _ {2} } \right \rangle = {
\frac{1}{\left | G \right | }
} \sum _ {g \in G } f _ {1} ( g ) f _ {2} ( g ^ {-1 } ) .
$$
Here, $ \langle {\chi _ {i} , \chi _ {j} } \rangle = \delta _ {ij } $(
the Kronecker delta) for all $ \chi _ {i} , \chi _ {j} \in { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $
and if $ V $
and $ W $
are two finite-dimensional $ \mathbf C G $-
modules, then $ { \mathop{\rm dim} } ( { \mathop{\rm Hom} } _ {\mathbf C G } ( V,W ) / \mathbf C ) = \langle {\chi _ {V} , \chi _ {W} } \rangle $
and hence the isomorphism type of $ V $
is determined by $ \chi _ {V} $.
If $ p $
is a prime integer, then a finite group that is the direct product of a cyclic group and a $ p $-
group (or equivalently of a cyclic $ p ^ \prime $-
group and a $ p $-
group) is called a $ p $-
elementary group. Any subgroup or quotient of such a group is also $ p $-
elementary. A finite group is called elementary if it is $ p $-
elementary for some prime number $ p $.
It is well-known that each irreducible character $ \chi $
of an elementary group $ E $
is of the form $ \chi = { \mathop{\rm Ind} } _ {H} ^ {E} ( \psi ) $
for some subgroup $ H $
of $ E $
and some linear character $ \psi $
of $ H $(
cf. [a8], Thm. 16).
For a finite group $ G $,
let $ R ( G ) $
be the additive subgroup of $ { \mathop{\rm CF} } ( G, \mathbf C ) $
generated by all characters of $ G $.
The elements of $ R ( G ) $
are called virtual or generalized characters of $ G $
and $ R ( G ) $
is a ring and also a free Abelian group with free basis $ { \mathop{\rm Irr} } _ {\mathbf C} ( G ) $.
Clearly,
$$
{ \mathop{\rm Irr} } _ {\mathbf C} ( G ) = \left \{ {\varphi \in R ( G ) } : {\left \langle {\varphi, \varphi } \right \rangle =1 \textrm{ and } \varphi ( 1 ) > 0 } \right \} .
$$
In [a2], R. Brauer proved the following assertions:
1) Every character $ \chi $
of a finite group $ G $
is a linear combination with integer coefficients of characters induced from linear characters of elementary subgroups of $ G $.
Brauer used this result in [a2] to prove that Artin $ L $-
functions of virtual characters have a meromorphic extension to the entire complex plane. Then, in [a3], he proved that this assertion is equivalent to what is known as the Brauer characterization of characters:
2) A class function $ \varphi \in { \mathop{\rm CF} } ( G, \mathbf C ) $
lies in $ R ( G ) $
if and only if $ { \mathop{\rm Res} } _ {E} ^ {G} ( \varphi ) \in R ( E ) $
for every elementary subgroup $ E $
of $ G $.
An immediate consequence (cf. [a8], Thm 22 and Corollary) is:
3) A class function $ \varphi \in { \mathop{\rm CF} } ( G, \mathbf C ) $
lies in $ R ( G ) $
if and only if for each elementary subgroup $ E $
of $ G $
and each linear character $ \chi $
of $ E $,
$$
\left \langle { { \mathop{\rm Res} } _ {E} ^ {G} ( \varphi ) , \chi } \right \rangle \in Z.
$$
A sort of converse of 1) was given by J. Green ([a8], Thm. 23{}). There are numerous applications of these results (cf. [a7], Lemma 8.14; Thm. 8.24, [a6], V, Hauptsatz 19.11, [a8], Sect. 11.2; Chap. 12).
Significant improvements to the proofs of these results have been obtained by several authors [a4], [a7], Chap. 8, [a8], Chaps. 10, 11, [a6], V, Sect. 19.
Let $ R _ {+} ( G ) $
denote the free Abelian group whose free basis is given by the $ G $-
conjugacy classes $ ( H, \lambda ) $,
where $ H $
is a subgroup of $ G $
and $ \lambda $
is a linear character of $ H $.
Clearly $ { \mathop{\rm Ind} } _ {H} ^ {G} ( \lambda ) $
is a character of $ G $
and hence induction induces an Abelian group homomorphism $ {\mathcal I} : {R _ {+} ( G ) } \rightarrow {R ( G ) } $,
which is surjective by 1). Some interesting recent results in [a9] and [a1] give explicit (functorial) splittings of $ {\mathcal I} $(
i.e., an explicit group homomorphism $ {\mathcal J} : {R ( G ) } \rightarrow {R _ {+} ( G ) } $
such that $ {\mathcal I} \cdot {\mathcal J} = { \mathop{\rm id} } _ {R ( G ) } $).
Clearly, $ R ( G ) $
is the Grothendieck group of the category of finitely generated $ \mathbf C G $-
modules. Consequently, 1) can be viewed as proving the surjectivity of the induction mapping from one Grothendieck group into another. By changing the coefficient ring $ \mathbf C $,
or by considering the modular context, etc., many important analogues of these results emerge, cf. [a8], Chaps. 12, 16, 17, [a5], Thm. 2, [a10].
References
[a1] | R. Boltje, "A canonical Brauer induction formula" Asterisque , 181/2 (1990) pp. 31–59 |
[a2] | R. Brauer, "On Artin's L-series with general group characters" Ann. of Math. , 48 (1947) pp. 502–514 |
[a3] | R. Brauer, "A characterization of the characters of a group of finite order" Ann. of Math. , 57 (1953) pp. 357–377 |
[a4] | R. Brauer, J. Tate, "On the characters of finite groups" Ann. of Math. , 62 (1955) pp. 1–7 |
[a5] | M. Broué, "Sur l'induction des modules indécomposables et la projectivité relative" Math. Z. , 149 (1976) pp. 227–245 |
[a6] | B. Huppert, "Endliche Gruppen" , I , Springer (1967) pp. Chapt. V |
[a7] | I.M. Isaacs, "Character theory of finite groups" , Acad. Press (1976) |
[a8] | J.-P. Serre, "Linear representations of finite groups" , Springer (1977) (Translated from French) |
[a9] | V. Snaith, "Explicit Brauer induction" Invent. Math. , 94 (1988) pp. 455–478 |
[a10] | X. Zhou, "On the decomposition map of Grothendieck groups" Math. Z. , 206 (1991) pp. 533–534 |