|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105601.png" /> be the ring of integers of an algebraic number [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105602.png" /> (cf. also [[Algebraic number|Algebraic number]]). The Milnor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105604.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105605.png" />, which is also called the tame kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105606.png" />, is an [[Abelian group|Abelian group]] of finite order.
| + | <!-- |
| + | b1105601.png |
| + | $#A+1 = 53 n = 8 |
| + | $#C+1 = 53 : ~/encyclopedia/old_files/data/B110/B.1100560 Birch\ANDTate conjecture |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105607.png" /> denote the [[Dedekind zeta-function|Dedekind zeta-function]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105608.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b1105609.png" /> is totally real, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056010.png" /> is a non-zero rational number, and the Birch–Tate conjecture is about a relationship between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056011.png" /> and the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056012.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Specifically, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056013.png" /> be the largest natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056014.png" /> such that the [[Galois group|Galois group]] of the cyclotomic extension over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056015.png" /> obtained by adjoining the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056016.png" />th roots of unity to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056017.png" />, is an elementary Abelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056018.png" />-group (cf. [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056019.png" />-group]]). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056020.png" /> is a rational integer, and the Birch–Tate conjecture states that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056021.png" /> is a totally real number field, then
| + | Let $ {\mathcal O} _ {F} $ |
| + | be the ring of integers of an algebraic number [[Field|field]] $ F $( |
| + | cf. also [[Algebraic number|Algebraic number]]). The Milnor $ K $- |
| + | group $ K _ {2} ( {\mathcal O} _ {F} ) $, |
| + | which is also called the tame kernel of $ F $, |
| + | is an [[Abelian group|Abelian group]] of finite order. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056022.png" /></td> </tr></table>
| + | Let $ \zeta _ {F} $ |
| + | denote the [[Dedekind zeta-function|Dedekind zeta-function]] of $ F $. |
| + | If $ F $ |
| + | is totally real, then $ \zeta _ {F} ( - 1 ) $ |
| + | is a non-zero rational number, and the Birch–Tate conjecture is about a relationship between $ \zeta _ {F} ( - 1 ) $ |
| + | and the order of $ K _ {2} ( {\mathcal O} _ {F} ) $. |
| | | |
− | A numerical example is as follows. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056023.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056025.png" />; so it is predicted by the conjecture that the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056026.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056027.png" />, which is correct.
| + | Specifically, let $ w _ {2} ( F ) $ |
| + | be the largest natural number $ N $ |
| + | such that the [[Galois group|Galois group]] of the cyclotomic extension over $ F $ |
| + | obtained by adjoining the $ N $ |
| + | th roots of unity to $ F $, |
| + | is an elementary Abelian $ 2 $- |
| + | group (cf. [[P-group| $ p $- |
| + | group]]). Then $ w _ {2} ( F ) \cdot \zeta _ {F} ( - 1 ) $ |
| + | is a rational integer, and the Birch–Tate conjecture states that if $ F $ |
| + | is a totally real number field, then |
| | | |
− | What is known for totally real number fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056028.png" />?
| + | $$ |
| + | \# K _ {2} ( {\mathcal O} _ {F} ) = \left | {w _ {2} ( F ) \cdot \zeta _ {F} ( - 1 ) } \right | . |
| + | $$ |
| | | |
− | By work on the main conjecture of Iwasawa theory [[#References|[a6]]], the Birch–Tate conjecture was confirmed up to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056029.png" />-torsion for Abelian extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056031.png" />.
| + | A numerical example is as follows. For $ F = \mathbf Q $ |
| + | one has $ w _ {2} ( \mathbf Q ) = 24 $, |
| + | $ \zeta _ {\mathbf Q} ( - 1 ) = - {1 / {12 } } $; |
| + | so it is predicted by the conjecture that the order of $ K _ {2} ( \mathbf Z ) $ |
| + | is $ 2 $, |
| + | which is correct. |
| | | |
− | Subsequently, [[#References|[a7]]], the Birch–Tate conjecture was confirmed up to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056032.png" />-torsion for arbitrary totally real number fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056033.png" />.
| + | What is known for totally real number fields $ F $? |
| | | |
− | Moreover, [[#References|[a7]]] (see the footnote on page 499) together with [[#References|[a4]]], also the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056034.png" />-part of the Birch–Tate conjecture is confirmed for Abelian extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056036.png" />.
| + | By work on the main conjecture of Iwasawa theory [[#References|[a6]]], the Birch–Tate conjecture was confirmed up to $ 2 $- |
| + | torsion for Abelian extensions $ F $ |
| + | of $ \mathbf Q $. |
| | | |
− | By the above, all that is left to be considered is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056037.png" />-part of the Birch–Tate conjecture for non-Abelian extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056039.png" />. In this regard, for extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056041.png" /> for which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056042.png" />-primary subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056043.png" /> is elementary Abelian, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056044.png" />-part of the Birch–Tate conjecture has been confirmed [[#References|[a3]]].
| + | Subsequently, [[#References|[a7]]], the Birch–Tate conjecture was confirmed up to $ 2 $- |
| + | torsion for arbitrary totally real number fields $ F $. |
| | | |
− | In addition, explicit examples of families of non-Abelian extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056045.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056046.png" /> for which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056047.png" />-part of the Birch–Tate conjecture holds, have been given in [[#References|[a1]]], [[#References|[a2]]].
| + | Moreover, [[#References|[a7]]] (see the footnote on page 499) together with [[#References|[a4]]], also the $ 2 $- |
| + | part of the Birch–Tate conjecture is confirmed for Abelian extensions $ F $ |
| + | of $ \mathbf Q $. |
| | | |
− | The Birch–Tate conjecture is related to the Lichtenbaum conjectures [[#References|[a5]]] for totally real number fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056048.png" />. For every odd natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056049.png" />, the Lichtenbaum conjectures express, up to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056050.png" />-torsion, the ratio of the orders of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056052.png" /> in terms of the value of the zeta-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056053.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056054.png" />. | + | By the above, all that is left to be considered is the $ 2 $- |
| + | part of the Birch–Tate conjecture for non-Abelian extensions $ F $ |
| + | of $ \mathbf Q $. |
| + | In this regard, for extensions $ F $ |
| + | of $ \mathbf Q $ |
| + | for which the $ 2 $- |
| + | primary subgroup of $ K _ {2} ( {\mathcal O} _ {F} ) $ |
| + | is elementary Abelian, the $ 2 $- |
| + | part of the Birch–Tate conjecture has been confirmed [[#References|[a3]]]. |
| + | |
| + | In addition, explicit examples of families of non-Abelian extensions $ F $ |
| + | of $ \mathbf Q $ |
| + | for which the $ 2 $- |
| + | part of the Birch–Tate conjecture holds, have been given in [[#References|[a1]]], [[#References|[a2]]]. |
| + | |
| + | The Birch–Tate conjecture is related to the Lichtenbaum conjectures [[#References|[a5]]] for totally real number fields $ F $. |
| + | For every odd natural number $ m $, |
| + | the Lichtenbaum conjectures express, up to $ 2 $- |
| + | torsion, the ratio of the orders of $ K _ {2m } ( {\mathcal O} _ {F} ) $ |
| + | and $ K _ {2m+1 } ( {\mathcal O} _ {F} ) $ |
| + | in terms of the value of the zeta-function $ \zeta _ {F} $ |
| + | at $ - m $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.E. Conner, J. Hurrelbrink, "Class number parity" , ''Pure Math.'' , '''8''' , World Sci. (1988)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Hurrelbrink, "Class numbers, units, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056055.png" />" J.F. Jardine (ed.) V. Snaith (ed.) , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056056.png" />-theory: Connection with Geometry and Topology'' , ''NATO ASI Ser. C'' , '''279''' , Kluwer Acad. Publ. (1989) pp. 87–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Kolster, "The structure of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056057.png" />-Sylow subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056058.png" /> I" ''Comment. Math. Helv.'' , '''61''' (1986) pp. 376–388</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Kolster, "A relation between the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056059.png" />-primary parts of the main conjecture and the Birch–Tate conjecture" ''Canad. Math. Bull.'' , '''32''' : 2 (1989) pp. 248–251</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Lichtenbaum, "Values of zeta functions, étale cohomology, and algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056060.png" />-theory" H. Bass (ed.) , ''Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056061.png" />-theory II'' , ''Lecture Notes in Mathematics'' , '''342''' , Springer (1973) pp. 489–501</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Mazur, A. Wiles, "Class fields of abelian extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110560/b11056062.png" />" ''Invent. Math.'' , '''76''' (1984) pp. 179–330</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Wiles, "The Iwasawa conjecture for totally real fields" ''Ann. of Math.'' , '''131''' (1990) pp. 493–540</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.E. Conner, J. Hurrelbrink, "Class number parity" , ''Pure Math.'' , '''8''' , World Sci. (1988)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Hurrelbrink, "Class numbers, units, and $K_2$" J.F. Jardine (ed.) V. Snaith (ed.) , ''Algebraic K-theory: Connection with Geometry and Topology'' , ''NATO ASI Ser. C'' , '''279''' , Kluwer Acad. Publ. (1989) pp. 87–102</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Kolster, "The structure of the $2$-Sylow subgroup of $K_2(\mathcal{O})$ I" ''Comment. Math. Helv.'' , '''61''' (1986) pp. 376–388</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Kolster, "A relation between the $2$-primary parts of the main conjecture and the Birch–Tate conjecture" ''Canad. Math. Bull.'' , '''32''' : 2 (1989) pp. 248–251</TD></TR> |
| + | <TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Lichtenbaum, "Values of zeta functions, étale cohomology, and algebraic K-theory" H. Bass (ed.) , ''Algebraic K-theory II'' , ''Lecture Notes in Mathematics'' , '''342''' , Springer (1973) pp. 489–501</TD></TR> |
| + | <TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Mazur, A. Wiles, "Class fields of abelian extensions of $\QQ$" ''Invent. Math.'' , '''76''' (1984) pp. 179–330</TD></TR> |
| + | <TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Wiles, "The Iwasawa conjecture for totally real fields" ''Ann. of Math.'' , '''131''' (1990) pp. 493–540</TD></TR></table> |
Let $ {\mathcal O} _ {F} $
be the ring of integers of an algebraic number field $ F $(
cf. also Algebraic number). The Milnor $ K $-
group $ K _ {2} ( {\mathcal O} _ {F} ) $,
which is also called the tame kernel of $ F $,
is an Abelian group of finite order.
Let $ \zeta _ {F} $
denote the Dedekind zeta-function of $ F $.
If $ F $
is totally real, then $ \zeta _ {F} ( - 1 ) $
is a non-zero rational number, and the Birch–Tate conjecture is about a relationship between $ \zeta _ {F} ( - 1 ) $
and the order of $ K _ {2} ( {\mathcal O} _ {F} ) $.
Specifically, let $ w _ {2} ( F ) $
be the largest natural number $ N $
such that the Galois group of the cyclotomic extension over $ F $
obtained by adjoining the $ N $
th roots of unity to $ F $,
is an elementary Abelian $ 2 $-
group (cf. $ p $-
group). Then $ w _ {2} ( F ) \cdot \zeta _ {F} ( - 1 ) $
is a rational integer, and the Birch–Tate conjecture states that if $ F $
is a totally real number field, then
$$
\# K _ {2} ( {\mathcal O} _ {F} ) = \left | {w _ {2} ( F ) \cdot \zeta _ {F} ( - 1 ) } \right | .
$$
A numerical example is as follows. For $ F = \mathbf Q $
one has $ w _ {2} ( \mathbf Q ) = 24 $,
$ \zeta _ {\mathbf Q} ( - 1 ) = - {1 / {12 } } $;
so it is predicted by the conjecture that the order of $ K _ {2} ( \mathbf Z ) $
is $ 2 $,
which is correct.
What is known for totally real number fields $ F $?
By work on the main conjecture of Iwasawa theory [a6], the Birch–Tate conjecture was confirmed up to $ 2 $-
torsion for Abelian extensions $ F $
of $ \mathbf Q $.
Subsequently, [a7], the Birch–Tate conjecture was confirmed up to $ 2 $-
torsion for arbitrary totally real number fields $ F $.
Moreover, [a7] (see the footnote on page 499) together with [a4], also the $ 2 $-
part of the Birch–Tate conjecture is confirmed for Abelian extensions $ F $
of $ \mathbf Q $.
By the above, all that is left to be considered is the $ 2 $-
part of the Birch–Tate conjecture for non-Abelian extensions $ F $
of $ \mathbf Q $.
In this regard, for extensions $ F $
of $ \mathbf Q $
for which the $ 2 $-
primary subgroup of $ K _ {2} ( {\mathcal O} _ {F} ) $
is elementary Abelian, the $ 2 $-
part of the Birch–Tate conjecture has been confirmed [a3].
In addition, explicit examples of families of non-Abelian extensions $ F $
of $ \mathbf Q $
for which the $ 2 $-
part of the Birch–Tate conjecture holds, have been given in [a1], [a2].
The Birch–Tate conjecture is related to the Lichtenbaum conjectures [a5] for totally real number fields $ F $.
For every odd natural number $ m $,
the Lichtenbaum conjectures express, up to $ 2 $-
torsion, the ratio of the orders of $ K _ {2m } ( {\mathcal O} _ {F} ) $
and $ K _ {2m+1 } ( {\mathcal O} _ {F} ) $
in terms of the value of the zeta-function $ \zeta _ {F} $
at $ - m $.
References
[a1] | P.E. Conner, J. Hurrelbrink, "Class number parity" , Pure Math. , 8 , World Sci. (1988) |
[a2] | J. Hurrelbrink, "Class numbers, units, and $K_2$" J.F. Jardine (ed.) V. Snaith (ed.) , Algebraic K-theory: Connection with Geometry and Topology , NATO ASI Ser. C , 279 , Kluwer Acad. Publ. (1989) pp. 87–102 |
[a3] | M. Kolster, "The structure of the $2$-Sylow subgroup of $K_2(\mathcal{O})$ I" Comment. Math. Helv. , 61 (1986) pp. 376–388 |
[a4] | M. Kolster, "A relation between the $2$-primary parts of the main conjecture and the Birch–Tate conjecture" Canad. Math. Bull. , 32 : 2 (1989) pp. 248–251 |
[a5] | S. Lichtenbaum, "Values of zeta functions, étale cohomology, and algebraic K-theory" H. Bass (ed.) , Algebraic K-theory II , Lecture Notes in Mathematics , 342 , Springer (1973) pp. 489–501 |
[a6] | B. Mazur, A. Wiles, "Class fields of abelian extensions of $\QQ$" Invent. Math. , 76 (1984) pp. 179–330 |
[a7] | A. Wiles, "The Iwasawa conjecture for totally real fields" Ann. of Math. , 131 (1990) pp. 493–540 |