|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406101.png" />-dimensional polyhedral chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406102.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406103.png" />''
| + | <!-- |
| + | f0406101.png |
| + | $#A+1 = 48 n = 0 |
| + | $#C+1 = 48 : ~/encyclopedia/old_files/data/F040/F.0400610 Flat norm |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406104.png" /> which is defined as follows:
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406105.png" /></td> </tr></table>
| + | ''of an $ r $- |
| + | dimensional polyhedral chain $ A $ |
| + | in the space $ E ^ {n} $'' |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406106.png" /> is the mass of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406107.png" /> (cf. [[Mass and co-mass|Mass and co-mass]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406108.png" /> is its boundary, and the infimum is taken over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f0406109.png" />-dimensional polyhedral chains. The properties of the flat norm are
| + | The norm $ | A | ^ \flat $ |
| + | which is defined as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061010.png" /></td> </tr></table>
| + | $$ |
| + | | A | ^ \flat = \ |
| + | \inf \{ | A - \partial D | + | D | \} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061011.png" /></td> </tr></table>
| + | where $ | C | $ |
| + | is the mass of the chain $ C $( |
| + | cf. [[Mass and co-mass|Mass and co-mass]]), $ \partial C $ |
| + | is its boundary, and the infimum is taken over all $ ( r+ 1) $- |
| + | dimensional polyhedral chains. The properties of the flat norm are |
| | | |
− | for any cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061012.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061013.png" /> is the projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061014.png" /> on some plane, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061015.png" />.
| + | $$ |
| + | | a A | ^ \flat = | a | | A | ^ \flat ,\ \ |
| + | | A + B | ^ \flat \leq | A | ^ \flat + | B | ^ \flat , |
| + | $$ |
| | | |
− | The [[Completion|completion]] of the linear space of polyhedral chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061016.png" /> is a separable Banach space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061017.png" />; its elements are known as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061018.png" />-dimensional flat chains, to each of which an infinite or a finite mass can be assigned: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061019.png" />.
| + | $$ |
| + | | A | ^ \flat = 0 \iff A = 0,\ | A | ^ \flat |
| + | \leq | A |,\ | \sigma | ^ \flat = | \sigma | |
| + | $$ |
| | | |
− | The boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061020.png" /> of a flat chain is also defined by passing to the limit; it is a continuous operation, and
| + | for any cell $ \sigma $; |
| + | if $ \pi $ |
| + | is the projection of $ E ^ {n} $ |
| + | on some plane, one has $ | \pi A | ^ \flat \leq | A | ^ \flat $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061021.png" /></td> </tr></table>
| + | The [[completion]] of the linear space of polyhedral chains $ C _ {r} ( E ^ {n} ) $ |
| + | is a separable Banach space, $ C _ {r} ^ \flat ( E ^ {n} ) $; |
| + | its elements are known as $ r $- |
| + | dimensional flat chains, to each of which an infinite or a finite mass can be assigned: $ | A | _ \flat = \inf \{ {\lim\limits \inf } _ {i \rightarrow \infty } | A _ {i} |, A _ {i} \rightarrow _ \flat A \textrm{ as polyhedral chains } \} $. |
| | | |
− | The flat norm is the largest of the semi-norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061023.png" /> in which all cells <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061024.png" /> satisfy the inequalities: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061026.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061027.png" />-dimensional flat cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061028.png" /> is a linear function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061029.png" />-dimensional flat chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061030.png" /> (denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061031.png" />) such that, for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061032.png" />, | + | The boundary $ \partial $ |
| + | of a flat chain is also defined by passing to the limit; it is a continuous operation, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061033.png" /></td> </tr></table>
| + | $$ |
| + | | \partial A | ^ \flat \leq | A | ^ \flat ,\ \ |
| + | | A | ^ \flat = \inf \{ |
| + | | A - \partial D | ^ \flat + | D | ^ \flat \} . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061034.png" /> is the co-mass of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061035.png" />. It is an element of the non-separable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061036.png" /> dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061037.png" />. The flat norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061038.png" /> of a flat cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061039.png" /> is defined in the standard manner:
| + | The flat norm is the largest of the semi-norms $ | \cdot | ^ \prime $ |
| + | on $ C _ {r} ( E ^ {n} ) $ |
| + | in which all cells $ \sigma $ |
| + | satisfy the inequalities: $ | \sigma ^ {r} | ^ \prime \leq | \sigma ^ {r} | $, |
| + | $ | \partial \sigma ^ {r+ 1 } | ^ \prime \leq | \sigma ^ {r+ 1 } | $. |
| + | An $ r $- |
| + | dimensional flat cochain $ X $ |
| + | is a linear function of $ r $- |
| + | dimensional flat chains $ A $( |
| + | denoted by $ X \cdot A $) |
| + | such that, for a given $ N $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061040.png" /></td> </tr></table>
| + | $$ |
| + | | X \cdot A | \leq N | A | ^ \flat , |
| + | $$ |
| + | |
| + | where $ | X | $ |
| + | is the co-mass of $ X $. |
| + | It is an element of the non-separable space $ C ^ {\flat r } ( E ^ {n} ) $ |
| + | dual to $ C _ {r} ^ \flat ( E ^ {n} ) $. |
| + | The flat norm $ | X | ^ \flat $ |
| + | of a flat cochain $ X $ |
| + | is defined in the standard manner: |
| + | |
| + | $$ |
| + | | X | ^ \flat = \ |
| + | \sup _ {| A| ^ \flat = 1 } | X \cdot A |, |
| + | $$ |
| | | |
| so that | | so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061041.png" /></td> </tr></table>
| + | $$ |
| + | | A | ^ \flat = \ |
| + | \sup _ {| X| ^ \flat = 1 } | X \cdot A |,\ \ |
| + | | X \cdot A | \leq | X | ^ \flat | A | ^ \flat , |
| + | $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061042.png" /></td> </tr></table>
| + | $$ |
| + | | X | \leq | X | ^ \flat . |
| + | $$ |
| | | |
− | For the co-boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061043.png" /> of a flat chain (defined by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061044.png" />) one has: | + | For the co-boundary $ dX $ |
| + | of a flat chain (defined by the condition $ dX \cdot A = X \cdot dA $) |
| + | one has: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061045.png" /></td> </tr></table>
| + | $$ |
| + | | dX | ^ \flat \leq | X | ^ \flat , |
| + | $$ |
| | | |
| so that | | so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061046.png" /></td> </tr></table>
| + | $$ |
| + | | X | ^ \flat = \ |
| + | \sup \{ | X |, | dX | \} . |
| + | $$ |
| | | |
− | Similar concepts are introduced for polyhedral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061047.png" />-dimensional chains situated in open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040610/f04061048.png" />. See also [[Flat form|Flat form]]. | + | Similar concepts are introduced for polyhedral $ r $-dimensional |
| + | chains situated in open subsets $ R \subset E ^ {n} $. |
| + | See also [[Flat form]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957) {{MR|0087148}} {{ZBL|0083.28204}} </TD></TR></table> |
of an $ r $-
dimensional polyhedral chain $ A $
in the space $ E ^ {n} $
The norm $ | A | ^ \flat $
which is defined as follows:
$$
| A | ^ \flat = \
\inf \{ | A - \partial D | + | D | \} ,
$$
where $ | C | $
is the mass of the chain $ C $(
cf. Mass and co-mass), $ \partial C $
is its boundary, and the infimum is taken over all $ ( r+ 1) $-
dimensional polyhedral chains. The properties of the flat norm are
$$
| a A | ^ \flat = | a | | A | ^ \flat ,\ \
| A + B | ^ \flat \leq | A | ^ \flat + | B | ^ \flat ,
$$
$$
| A | ^ \flat = 0 \iff A = 0,\ | A | ^ \flat
\leq | A |,\ | \sigma | ^ \flat = | \sigma |
$$
for any cell $ \sigma $;
if $ \pi $
is the projection of $ E ^ {n} $
on some plane, one has $ | \pi A | ^ \flat \leq | A | ^ \flat $.
The completion of the linear space of polyhedral chains $ C _ {r} ( E ^ {n} ) $
is a separable Banach space, $ C _ {r} ^ \flat ( E ^ {n} ) $;
its elements are known as $ r $-
dimensional flat chains, to each of which an infinite or a finite mass can be assigned: $ | A | _ \flat = \inf \{ {\lim\limits \inf } _ {i \rightarrow \infty } | A _ {i} |, A _ {i} \rightarrow _ \flat A \textrm{ as polyhedral chains } \} $.
The boundary $ \partial $
of a flat chain is also defined by passing to the limit; it is a continuous operation, and
$$
| \partial A | ^ \flat \leq | A | ^ \flat ,\ \
| A | ^ \flat = \inf \{
| A - \partial D | ^ \flat + | D | ^ \flat \} .
$$
The flat norm is the largest of the semi-norms $ | \cdot | ^ \prime $
on $ C _ {r} ( E ^ {n} ) $
in which all cells $ \sigma $
satisfy the inequalities: $ | \sigma ^ {r} | ^ \prime \leq | \sigma ^ {r} | $,
$ | \partial \sigma ^ {r+ 1 } | ^ \prime \leq | \sigma ^ {r+ 1 } | $.
An $ r $-
dimensional flat cochain $ X $
is a linear function of $ r $-
dimensional flat chains $ A $(
denoted by $ X \cdot A $)
such that, for a given $ N $,
$$
| X \cdot A | \leq N | A | ^ \flat ,
$$
where $ | X | $
is the co-mass of $ X $.
It is an element of the non-separable space $ C ^ {\flat r } ( E ^ {n} ) $
dual to $ C _ {r} ^ \flat ( E ^ {n} ) $.
The flat norm $ | X | ^ \flat $
of a flat cochain $ X $
is defined in the standard manner:
$$
| X | ^ \flat = \
\sup _ {| A| ^ \flat = 1 } | X \cdot A |,
$$
so that
$$
| A | ^ \flat = \
\sup _ {| X| ^ \flat = 1 } | X \cdot A |,\ \
| X \cdot A | \leq | X | ^ \flat | A | ^ \flat ,
$$
and
$$
| X | \leq | X | ^ \flat .
$$
For the co-boundary $ dX $
of a flat chain (defined by the condition $ dX \cdot A = X \cdot dA $)
one has:
$$
| dX | ^ \flat \leq | X | ^ \flat ,
$$
so that
$$
| X | ^ \flat = \
\sup \{ | X |, | dX | \} .
$$
Similar concepts are introduced for polyhedral $ r $-dimensional
chains situated in open subsets $ R \subset E ^ {n} $.
See also Flat form.
References