|
|
(3 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673601.png" />''
| + | <!-- |
| + | n0673601.png |
| + | $#A+1 = 101 n = 0 |
| + | $#C+1 = 101 : ~/encyclopedia/old_files/data/N067/N.0607360 Norm on a field |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673602.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673603.png" /> to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673604.png" /> of real numbers, which satisfies the following conditions:
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673605.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673606.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673607.png" />;
| + | '' $ K $'' |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673608.png" />;
| + | A mapping $ \phi $ |
| + | from $ K $ |
| + | to the set $ \mathbf R $ |
| + | of real numbers, which satisfies the following conditions: |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n0673609.png" />.
| + | 1) $ \phi ( x) \geq 0 $, |
| + | and $ \phi ( x) = 0 $ |
| + | if and only if $ x = 0 $; |
| | | |
− | Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736011.png" />.
| + | 2) $ \phi ( x \cdot y ) = \phi ( x ) \cdot \phi ( y ) $; |
| | | |
− | The norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736012.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736013.png" /> instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736014.png" />. A norm is also called an absolute value or a multiplicative valuation. Norms may (more generally) be considered on any ring with values in a linearly ordered ring [[#References|[4]]]. See also [[Valuation|Valuation]].
| + | 3) $ \phi ( x + y ) \leq \phi ( x ) + \phi ( y ) $. |
| | | |
− | Examples of norms. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736015.png" />, the field of real numbers, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736016.png" />, the ordinary [[Absolute value|absolute value]] or modulus of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736017.png" />, is a norm. Similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736018.png" /> is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736019.png" /> of complex numbers or the skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736020.png" /> of quaternions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736021.png" /> is a norm. The subfields of these fields are thus also provided with an induced norm. Any field has the trivial norm:
| + | Hence $ \phi ( 1) = \phi ( - 1 ) = 1 $; |
| + | $ \phi ( x ^ {-1} ) = \phi( x) ^ {-1} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736022.png" /></td> </tr></table>
| + | The norm of $ x $ |
| + | is often denoted by $ | x | $ |
| + | instead of $ \phi ( x) $. |
| + | A norm is also called an absolute value or a multiplicative valuation. Norms may (more generally) be considered on any ring with values in a linearly ordered ring [[#References|[4]]]. See also [[Valuation|Valuation]]. |
| + | |
| + | Examples of norms. If $ K = \mathbf R $, |
| + | the field of real numbers, then $ | x | = \max \{ x, - x \} $, |
| + | the ordinary [[Absolute value|absolute value]] or modulus of the number $ x \in \mathbf R $, |
| + | is a norm. Similarly, if $ K $ |
| + | is the field $ \mathbf C $ |
| + | of complex numbers or the skew-field $ \mathbf H $ |
| + | of quaternions, then $ | x | = \sqrt {x \cdot \overline{x}\; } $ |
| + | is a norm. The subfields of these fields are thus also provided with an induced norm. Any field has the trivial norm: |
| + | |
| + | $$ |
| + | \phi ( x ) = \left \{ |
| + | \begin{array}{cl} |
| + | 0, & x = 0; \\ |
| + | 1, & x \neq 0. \\ |
| + | \end{array} |
| + | |
| + | \right .$$ |
| | | |
| Finite fields and their algebraic extensions only have the trivial norm. | | Finite fields and their algebraic extensions only have the trivial norm. |
| | | |
− | Examples of norms of another type are provided by logarithmic valuations of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736023.png" />: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736024.png" /> is a valuation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736025.png" /> with values in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736026.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736027.png" /> is a real number, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736029.png" /> is a norm. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736031.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736032.png" />-adic valuation of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736033.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736034.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736036.png" />-adic absolute value or the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736038.png" />-adic norm. These absolute values satisfy the following condition, which is stronger than 3): | + | Examples of norms of another type are provided by logarithmic valuations of a field $ K $: |
| + | If $ v $ |
| + | is a valuation on $ K $ |
| + | with values in the group $ \mathbf R $ |
| + | and if $ a $ |
| + | is a real number, $ 0 < a < 1 $, |
| + | then $ \phi ( x) = a ^ {v( x)} $ |
| + | is a norm. For example, if $ K = \mathbf Q $ |
| + | and $ v _ {p} $ |
| + | is the $ p $- |
| + | adic valuation of the field $ \mathbf Q $, |
| + | then $ {| x | } _ {p} = ( 1/p) ^ {v _ {p} ( x) } $ |
| + | is called the $ p $-adic absolute value or the $ p $-adic norm. These absolute values satisfy the following condition, which is stronger than 3): |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736039.png" />. | + | 4) $ \phi ( x + y ) \leq \max \{ \phi ( x ) , \phi ( y ) \} $. |
| | | |
− | Norms satisfying condition 4) are known as ultra-metric norms or non-Archimedean norms (as distinct from Archimedean norms which do not satisfy this condition (but do satisfy 3)). They are distinguished by the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736040.png" /> for all integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736041.png" />. All norms on a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736042.png" /> are ultra-metric. All ultra-metric norms are obtained from valuations as indicated above: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736043.png" /> (and conversely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736044.png" /> can always be taken as a valuation). | + | Norms satisfying condition 4) are known as ultra-metric norms or non-Archimedean norms (as distinct from Archimedean norms which do not satisfy this condition (but do satisfy 3)). They are distinguished by the fact that $ \phi ( n \cdot 1) \leq 1 $ |
| + | for all integers $ n $. |
| + | All norms on a field of characteristic $ p > 0 $ |
| + | are ultra-metric. All ultra-metric norms are obtained from valuations as indicated above: $ \phi = a ^ {v( x)} $ |
| + | (and conversely, $ - \mathop{\rm log} \phi $ |
| + | can always be taken as a valuation). |
| | | |
− | A norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736045.png" /> defines a [[Metric|metric]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736046.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736047.png" /> is taken as the distance between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736049.png" />, and in this way it defines a topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736050.png" />. The topology of any locally compact field is defined by some norm. Two norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736052.png" /> are said to be equivalent if they define the same topology; in a such case there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736053.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736054.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736055.png" />. | + | A norm $ \phi $ |
| + | defines a [[Metric|metric]] on $ K $ |
| + | if $ \phi ( x - y) $ |
| + | is taken as the distance between $ x $ |
| + | and $ y $, |
| + | and in this way it defines a topology on $ K $. |
| + | The topology of any locally compact field is defined by some norm. Two norms $ \phi _ {1} $ |
| + | and $ \phi _ {2} $ |
| + | are said to be equivalent if they define the same topology; in a such case there exists a $ \lambda > 0 $ |
| + | such that $ \phi _ {1} ( x) = \phi _ {2} ( x) ^ \lambda $ |
| + | for all $ x \in K $. |
| | | |
− | The structure of all Archimedean norms is given by Ostrowski's theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736056.png" /> is an Archimedean norm on a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736057.png" />, then there exists an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736058.png" /> into a certain everywhere-dense subfield of one of the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736060.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736061.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736062.png" /> is equivalent to the norm induced by that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736064.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736065.png" />. | + | The structure of all Archimedean norms is given by Ostrowski's theorem: If $ \phi $ |
| + | is an Archimedean norm on a field $ K $, |
| + | then there exists an isomorphism of $ K $ |
| + | into a certain everywhere-dense subfield of one of the fields $ \mathbf R $, |
| + | $ \mathbf C $ |
| + | or $ \mathbf H $ |
| + | such that $ \phi $ |
| + | is equivalent to the norm induced by that of $ \mathbf R $, |
| + | $ \mathbf C $ |
| + | or $ \mathbf H $. |
| | | |
− | Any non-trivial norm of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736066.png" /> of rational numbers is equivalent either to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736067.png" />-adic norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736068.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736069.png" /> is a prime number, or to the ordinary norm. For any rational number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736070.png" /> one has | + | Any non-trivial norm of the field $ \mathbf Q $ |
| + | of rational numbers is equivalent either to a $ p $- |
| + | adic norm $ {| \cdot | } _ {p} $, |
| + | where $ p $ |
| + | is a prime number, or to the ordinary norm. For any rational number $ r \in \mathbf Q $ |
| + | one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736071.png" /></td> </tr></table>
| + | $$ |
| + | | r | \prod _ { p } | r | _ {p} = 1. |
| + | $$ |
| | | |
| A similar formula is also valid for algebraic number fields [[#References|[2]]], [[#References|[3]]]. | | A similar formula is also valid for algebraic number fields [[#References|[2]]], [[#References|[3]]]. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736072.png" /> is a norm on a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736073.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736074.png" /> may be imbedded by the classical completion process in a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736075.png" /> that is complete with respect to the norm that (uniquely) extends <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736076.png" /> (cf. [[Complete topological space|Complete topological space]]). One of the principal modern methods in the study of fields is the imbedding of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736077.png" /> into the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736078.png" /> of all completions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736079.png" /> of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736080.png" /> with respect to all non-trivial norms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736081.png" /> (see [[Adèle|Adèle]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736082.png" /> admits non-trivial valuations, then it is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736083.png" /> in the adèlic topology; in fact, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736084.png" /> are non-trivial, non-equivalent norms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736085.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736086.png" /> are elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736087.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736088.png" />, then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736089.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736090.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736091.png" /> (the approximation theorem for norms). | + | If $ \phi $ |
| + | is a norm on a field $ K $, |
| + | then $ K $ |
| + | may be imbedded by the classical completion process in a field $ K _ \phi $ |
| + | that is complete with respect to the norm that (uniquely) extends $ \phi $( |
| + | cf. [[Complete topological space|Complete topological space]]). One of the principal modern methods in the study of fields is the imbedding of a field $ K $ |
| + | into the direct product $ \prod _ \phi K _ \phi $ |
| + | of all completions $ K _ \phi $ |
| + | of the field $ K $ |
| + | with respect to all non-trivial norms of $ K $( |
| + | see [[Adèle|Adèle]]). If $ K $ |
| + | admits non-trivial valuations, then it is dense in $ \prod _ \phi K _ \phi $ |
| + | in the adèlic topology; in fact, if $ \phi _ {1} \dots \phi _ {n} $ |
| + | are non-trivial, non-equivalent norms on $ K $, |
| + | if $ a _ {1} \dots a _ {n} $ |
| + | are elements of $ K $ |
| + | and if $ \epsilon > 0 $, |
| + | then there exists an $ a \in K $ |
| + | such that $ \phi _ {i} ( a - a _ {i} ) < \epsilon $ |
| + | for all $ i $( |
| + | the approximation theorem for norms). |
| | | |
− | A norm on a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736092.png" /> may be extended (in general, non-uniquely) to any algebraic field extension of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736093.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736094.png" /> is complete with respect to the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736095.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736096.png" /> is an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736097.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736098.png" />, the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736099.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n067360100.png" /> is unique, and is given by the formula | + | A norm on a field $ K $ |
| + | may be extended (in general, non-uniquely) to any algebraic field extension of the field $ K $. |
| + | If $ K $ |
| + | is complete with respect to the norm $ \phi $ |
| + | and if $ L $ |
| + | is an extension of $ K $ |
| + | of degree $ n $, |
| + | the extension of $ \phi $ |
| + | to $ L $ |
| + | is unique, and is given by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n067360101.png" /></td> </tr></table>
| + | $$ |
| + | \phi ^ \prime ( x ) = \{ \phi ( N _ {L / K } ( x ) ) \} ^ {1 / n } |
| + | $$ |
| | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n067360102.png" />. | + | for $ x \in L $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Non-Archimedean norms satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n067360103.png" /> and hence do not satisfy the [[Archimedean axiom|Archimedean axiom]], whence the appellation. | + | Non-Archimedean norms satisfy $ \phi ( n \cdot 1 ) \leq \phi ( 1) $ |
| + | and hence do not satisfy the [[Archimedean axiom|Archimedean axiom]], whence the appellation. |
$ K $
A mapping $ \phi $
from $ K $
to the set $ \mathbf R $
of real numbers, which satisfies the following conditions:
1) $ \phi ( x) \geq 0 $,
and $ \phi ( x) = 0 $
if and only if $ x = 0 $;
2) $ \phi ( x \cdot y ) = \phi ( x ) \cdot \phi ( y ) $;
3) $ \phi ( x + y ) \leq \phi ( x ) + \phi ( y ) $.
Hence $ \phi ( 1) = \phi ( - 1 ) = 1 $;
$ \phi ( x ^ {-1} ) = \phi( x) ^ {-1} $.
The norm of $ x $
is often denoted by $ | x | $
instead of $ \phi ( x) $.
A norm is also called an absolute value or a multiplicative valuation. Norms may (more generally) be considered on any ring with values in a linearly ordered ring [4]. See also Valuation.
Examples of norms. If $ K = \mathbf R $,
the field of real numbers, then $ | x | = \max \{ x, - x \} $,
the ordinary absolute value or modulus of the number $ x \in \mathbf R $,
is a norm. Similarly, if $ K $
is the field $ \mathbf C $
of complex numbers or the skew-field $ \mathbf H $
of quaternions, then $ | x | = \sqrt {x \cdot \overline{x}\; } $
is a norm. The subfields of these fields are thus also provided with an induced norm. Any field has the trivial norm:
$$
\phi ( x ) = \left \{
\begin{array}{cl}
0, & x = 0; \\
1, & x \neq 0. \\
\end{array}
\right .$$
Finite fields and their algebraic extensions only have the trivial norm.
Examples of norms of another type are provided by logarithmic valuations of a field $ K $:
If $ v $
is a valuation on $ K $
with values in the group $ \mathbf R $
and if $ a $
is a real number, $ 0 < a < 1 $,
then $ \phi ( x) = a ^ {v( x)} $
is a norm. For example, if $ K = \mathbf Q $
and $ v _ {p} $
is the $ p $-
adic valuation of the field $ \mathbf Q $,
then $ {| x | } _ {p} = ( 1/p) ^ {v _ {p} ( x) } $
is called the $ p $-adic absolute value or the $ p $-adic norm. These absolute values satisfy the following condition, which is stronger than 3):
4) $ \phi ( x + y ) \leq \max \{ \phi ( x ) , \phi ( y ) \} $.
Norms satisfying condition 4) are known as ultra-metric norms or non-Archimedean norms (as distinct from Archimedean norms which do not satisfy this condition (but do satisfy 3)). They are distinguished by the fact that $ \phi ( n \cdot 1) \leq 1 $
for all integers $ n $.
All norms on a field of characteristic $ p > 0 $
are ultra-metric. All ultra-metric norms are obtained from valuations as indicated above: $ \phi = a ^ {v( x)} $
(and conversely, $ - \mathop{\rm log} \phi $
can always be taken as a valuation).
A norm $ \phi $
defines a metric on $ K $
if $ \phi ( x - y) $
is taken as the distance between $ x $
and $ y $,
and in this way it defines a topology on $ K $.
The topology of any locally compact field is defined by some norm. Two norms $ \phi _ {1} $
and $ \phi _ {2} $
are said to be equivalent if they define the same topology; in a such case there exists a $ \lambda > 0 $
such that $ \phi _ {1} ( x) = \phi _ {2} ( x) ^ \lambda $
for all $ x \in K $.
The structure of all Archimedean norms is given by Ostrowski's theorem: If $ \phi $
is an Archimedean norm on a field $ K $,
then there exists an isomorphism of $ K $
into a certain everywhere-dense subfield of one of the fields $ \mathbf R $,
$ \mathbf C $
or $ \mathbf H $
such that $ \phi $
is equivalent to the norm induced by that of $ \mathbf R $,
$ \mathbf C $
or $ \mathbf H $.
Any non-trivial norm of the field $ \mathbf Q $
of rational numbers is equivalent either to a $ p $-
adic norm $ {| \cdot | } _ {p} $,
where $ p $
is a prime number, or to the ordinary norm. For any rational number $ r \in \mathbf Q $
one has
$$
| r | \prod _ { p } | r | _ {p} = 1.
$$
A similar formula is also valid for algebraic number fields [2], [3].
If $ \phi $
is a norm on a field $ K $,
then $ K $
may be imbedded by the classical completion process in a field $ K _ \phi $
that is complete with respect to the norm that (uniquely) extends $ \phi $(
cf. Complete topological space). One of the principal modern methods in the study of fields is the imbedding of a field $ K $
into the direct product $ \prod _ \phi K _ \phi $
of all completions $ K _ \phi $
of the field $ K $
with respect to all non-trivial norms of $ K $(
see Adèle). If $ K $
admits non-trivial valuations, then it is dense in $ \prod _ \phi K _ \phi $
in the adèlic topology; in fact, if $ \phi _ {1} \dots \phi _ {n} $
are non-trivial, non-equivalent norms on $ K $,
if $ a _ {1} \dots a _ {n} $
are elements of $ K $
and if $ \epsilon > 0 $,
then there exists an $ a \in K $
such that $ \phi _ {i} ( a - a _ {i} ) < \epsilon $
for all $ i $(
the approximation theorem for norms).
A norm on a field $ K $
may be extended (in general, non-uniquely) to any algebraic field extension of the field $ K $.
If $ K $
is complete with respect to the norm $ \phi $
and if $ L $
is an extension of $ K $
of degree $ n $,
the extension of $ \phi $
to $ L $
is unique, and is given by the formula
$$
\phi ^ \prime ( x ) = \{ \phi ( N _ {L / K } ( x ) ) \} ^ {1 / n }
$$
for $ x \in L $.
References
[1] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |
[2] | Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966) |
[3] | S. Lang, "Algebra" , Addison-Wesley (1984) |
[4] | A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) |
[5] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
Non-Archimedean norms satisfy $ \phi ( n \cdot 1 ) \leq \phi ( 1) $
and hence do not satisfy the Archimedean axiom, whence the appellation.