Difference between revisions of "Isogonal"
m (→Isogonal line.: link) |
m (AUTOMATIC EDIT (latexlist): Replaced 36 formulas out of 38 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 38 formulas, 36 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|partial}} | ||
Literally "same angle" . There are several concepts in mathematics involving isogonality. | Literally "same angle" . There are several concepts in mathematics involving isogonality. | ||
Line 11: | Line 19: | ||
===Isogonal line.=== | ===Isogonal line.=== | ||
− | Given a triangle | + | Given a triangle $A _ { 1 } A _ { 2 } A _ { 3 }$ and a line $L_1$ from one of the vertices, say from $A _ { 1 }$, to the opposite side. The corresponding isogonal line $L _ { 1 } ^ { \prime }$ is obtained by reflecting $L_1$ with respect to the [[Bisectrix|bisectrix]] in $A _ { 1 }$. |
− | If the lines | + | If the lines $L _ { 1 } = A _ { 1 } P _ { 1 }$, $L _ { 2 } = A _ { 2 } P _ { 2 }$ and $L _ { 3 } = A _ { 3 } P _ { 3 }$ are concurrent (i.e. pass through a single point $X$, i.e. are [[Cevian lines]]), then so are the isogonal lines $L _ { 1 } ^ { \prime }$, $L _ { 2 } ^ { \prime }$, $L _ { 3 } ^ { \prime }$. This follows fairly directly from the [[Ceva theorem|Ceva theorem]]. The point $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ is called the isogonal conjugate point. If the [[Barycentric coordinates|barycentric coordinates]] of $X$ (often called trilinear coordinates in this setting) are $( \alpha : \beta : \gamma )$, then those of $X ^ { \prime }$ are $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$ |
− | <img | + | <img src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080a.gif" style="border:1px solid;"/> |
Figure: i130080a | Figure: i130080a | ||
− | Another notion in rather the same spirit is that of the isotomic line to | + | Another notion in rather the same spirit is that of the isotomic line to $L_1$, which is the line $L_1 ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }_1$ such that $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$. Again it is true that if $L_1$, $L_{2}$, $L_3$ are concurrent, then so are $L _ { 1 } ^ { \prime \prime }$, $L _ { 2 } ^ { \prime \prime }$, $L _ { 3 } ^ { \prime \prime }$. This follows directly from the [[Ceva theorem|Ceva theorem]]. |
− | <img | + | <img src="https://www.encyclopediaofmath.org/legacyimages/common_img/i130080b.gif" style="border:1px solid;"/> |
Figure: i130080b | Figure: i130080b | ||
− | The point | + | The point $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ is called the isotomic conjugate point. The barycentric coordinates of $X ^ { \prime \prime }$ are $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$, where $a$, $b$, $c$ are the lengths of the sides of the triangle. The [[Gergonne point|Gergonne point]] is the isotomic conjugate of the [[Nagel point|Nagel point]]. |
− | The involutions | + | The involutions $X \mapsto X ^ { \prime }$ and $X \mapsto X ^ { \prime \prime }$, i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane $\mathbf{P} ^ { 2 } ( \mathbf{R} )$, [[#References|[a4]]]. |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987) pp. 327</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D. Hilbert, S. Cohn-Vossen, "Geometry and the imagination" , Chelsea (1952) pp. 249</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> R.A. Johnson, "Modern geometry" , Houghton–Mifflin (1929)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> R.H. Eddy, J.B. Wilker, "Plane mappings of isogonal-isotomic type" ''Soochow J. Math.'' , '''18''' : 2 (1992) pp. 135–158</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> N. Altshiller–Court, "College geometry" , Barnes & Noble (1952)</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> H.S.M. Coxeter, "The real projective plane" , Springer (1993) pp. 197–199 (Edition: Third)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> F. Bachmann, "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer (1973) (Edition: Second)</td></tr></table> |
Revision as of 16:55, 1 July 2020
Literally "same angle" . There are several concepts in mathematics involving isogonality.
Isogonal trajectory.
A trajectory that meets a given family of curves at a constant angle. See Isogonal trajectory.
Isogonal mapping.
A (differentiable) mapping that preserves angles. For instance, the stereographic projection of cartography has this property [a2]. See also Conformal mapping; Anti-conformal mapping.
Isogonal circles.
A circle is said to be isogonal with respect to two other circles if it makes the same angle with these two, [a1].
Isogonal line.
Given a triangle $A _ { 1 } A _ { 2 } A _ { 3 }$ and a line $L_1$ from one of the vertices, say from $A _ { 1 }$, to the opposite side. The corresponding isogonal line $L _ { 1 } ^ { \prime }$ is obtained by reflecting $L_1$ with respect to the bisectrix in $A _ { 1 }$.
If the lines $L _ { 1 } = A _ { 1 } P _ { 1 }$, $L _ { 2 } = A _ { 2 } P _ { 2 }$ and $L _ { 3 } = A _ { 3 } P _ { 3 }$ are concurrent (i.e. pass through a single point $X$, i.e. are Cevian lines), then so are the isogonal lines $L _ { 1 } ^ { \prime }$, $L _ { 2 } ^ { \prime }$, $L _ { 3 } ^ { \prime }$. This follows fairly directly from the Ceva theorem. The point $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ is called the isogonal conjugate point. If the barycentric coordinates of $X$ (often called trilinear coordinates in this setting) are $( \alpha : \beta : \gamma )$, then those of $X ^ { \prime }$ are $( \alpha ^ { - 1 } : \beta ^ { - 1 } : \gamma ^ { - 1 } )$
Figure: i130080a
Another notion in rather the same spirit is that of the isotomic line to $L_1$, which is the line $L_1 ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }_1$ such that $| A _ { 2 } P _ { 1 } ^ { \prime \prime } | = | P _ { 1 } A _ { 3 } |$. Again it is true that if $L_1$, $L_{2}$, $L_3$ are concurrent, then so are $L _ { 1 } ^ { \prime \prime }$, $L _ { 2 } ^ { \prime \prime }$, $L _ { 3 } ^ { \prime \prime }$. This follows directly from the Ceva theorem.
Figure: i130080b
The point $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ is called the isotomic conjugate point. The barycentric coordinates of $X ^ { \prime \prime }$ are $( a ^ { 2 } \alpha ^ { - 1 } : b ^ { 2 } \beta ^ { - 1 } : c ^ { 2 } \gamma ^ { - 1 } )$, where $a$, $b$, $c$ are the lengths of the sides of the triangle. The Gergonne point is the isotomic conjugate of the Nagel point.
The involutions $X \mapsto X ^ { \prime }$ and $X \mapsto X ^ { \prime \prime }$, i.e. isogonal conjugation and isotomic conjugation, are better regarded as involutions of the projective plane $\mathbf{P} ^ { 2 } ( \mathbf{R} )$, [a4].
References
[a1] | M. Berger, "Geometry" , I , Springer (1987) pp. 327 |
[a2] | D. Hilbert, S. Cohn-Vossen, "Geometry and the imagination" , Chelsea (1952) pp. 249 |
[a3] | R.A. Johnson, "Modern geometry" , Houghton–Mifflin (1929) |
[a4] | R.H. Eddy, J.B. Wilker, "Plane mappings of isogonal-isotomic type" Soochow J. Math. , 18 : 2 (1992) pp. 135–158 |
[a5] | N. Altshiller–Court, "College geometry" , Barnes & Noble (1952) |
[a6] | H.S.M. Coxeter, "The real projective plane" , Springer (1993) pp. 197–199 (Edition: Third) |
[a7] | F. Bachmann, "Aufbau der Geometrie aus dem Spiegelungsbegriff" , Springer (1973) (Edition: Second) |
Isogonal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isogonal&oldid=39653