Namespaces
Variants
Actions

Difference between pages "Modular group" and "Modular form"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
m (tex encoded by computer)
 
m (tex done, typos)
 
Line 1: Line 1:
 
<!--
 
<!--
m0644401.png
+
m0644201.png
$#A+1 = 67 n = 0
+
$#A+1 = 63 n = 0
$#C+1 = 67 : ~/encyclopedia/old_files/data/M064/M.0604440 Modular group
+
$#C+1 = 63 : ~/encyclopedia/old_files/data/M064/M.0604420 Modular form
 
Automatically converted into TeX, above some diagnostics.
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
Please remove this comment and the {{TEX|auto}} line below,
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
The group \Gamma $
+
''of one complex variable, elliptic modular form''
of all fractional-linear transformations $  \gamma $
+
 
of the form
+
A function f $
 +
on the upper half-plane H = \{ {z \in \mathbf C } : { \mathop{\rm Im}  z > 0 } \} $
 +
satisfying for some fixed  $  k $
 +
the automorphicity condition
  
 
$$ \tag{1 }
 
$$ \tag{1 }
\rightarrow  \gamma ( z)  = \
+
f
 +
\left (
  
 
\frac{a z + b }{c z + d }
 
\frac{a z + b }{c z + d }
  ,\ \  
+
 
a d - b c = 1 ,
+
\right )  = \
 +
( c z + d ) ^ {k} f ( z)
 +
$$
 +
 
 +
for any element
 +
 
 +
$$
 +
\left (
 +
\begin{array}{cc}
 +
a & b \\
 +
c & d  \\
 +
\end{array}
 +
\right ) \
 +
\in  \mathop{\rm SL} _ {2} ( \mathbf Z )
 
$$
 
$$
  
where  $  a , b , c , d $
+
( $  \mathop{\rm SL} _ {2} ( \mathbf Z ) $
are rational integers. The modular group can be identified with the quotient group  $  \mathop{\rm SL} _ {2} ( \mathbf Z ) / \{ \pm E \} $,  
+
is the group of integer-valued matrices with determinant  $ a d - b c = 1 $),  
where
+
and such that
  
 
$$  
 
$$  
E =  \left (
+
f ( z)  = \
 +
\sum _ { n= } 0 ^  \infty 
 +
a _ {n} q  ^ {n} ,
 +
$$
 +
 
 +
where  $ q =  \mathop{\rm exp} ( 2 \pi i z ) $,
 +
$  z \in H $,
 +
$  a _ {n} \in \mathbf C $.
 +
The integer  $  k \geq  0 $
 +
is called the weight of the modular form  $  f $.
 +
If  $  a _ {0} = 0 $,
 +
then  $  f $
 +
is called a parabolic modular form. There is also [[#References|[8]]] a definition of modular forms for all real values of  $  k $.
  
and is a [[Discrete subgroup|discrete subgroup]] in the [[Lie group|Lie group]] $   \mathop{\rm PSL} _ {2} ( \mathbf R ) = \mathop{\rm SL} _ {2} ( \mathbf R ) / \{ \pm E \} $.
+
An example of a modular form of weight k \geq 4 $
Here  $  \mathop{\rm SL} _ {2} ( \mathbf R ) $(
+
is given by the Eisenstein series (see [[#References|[4]]])
respectively,  $  \mathop{\rm SL} _ {2} ( \mathbf Z ) $)  
 
is the group of matrices
 
  
 
$$  
 
$$  
\left (
+
G _ {k} ( z)  = \
 +
\sum _ {m _ {1} , m _ {2} \in \mathbf Z } {}  ^ {*}
 +
( m _ {1} + m _ {2} z )  ^ {-} k ,
 +
$$
 +
 
 +
where the asterisk means that the pair  $  ( m _ {1} , m _ {2} ) = ( 0 , 0 ) $
 +
is excluded from summation. Here  $  G _ {k} ( z) \equiv 0 $
 +
for odd  $  k $
 +
and
 +
 
 +
$$
 +
G _ {k} ( z)  = \
 +
 
 +
\frac{2 ( 2 \pi i )  ^ {k} }{( k - 1 ) ! }
 +
 
 +
\left [ -
 +
 
 +
\frac{B _ {k} }{2 k }
 +
+
 +
\sum _ { n= } 1 ^  \infty 
 +
\sigma _ {k-} 1 ( n) q  ^ {n}
 +
\right ] ,
 +
$$
 +
 
 +
where  $  \sigma _ {k-} 1 ( n) = \sum _ {d \mid  n }  d  ^ {k-} 1 $
 +
and  $  B _ {k} $
 +
is the  $  k $-
 +
th Bernoulli number (cf. [[Bernoulli numbers|Bernoulli numbers]]).
 +
 
 +
The set of modular forms of weight  $  k $
 +
is a complex vector space, denoted by  $  M _ {k} $;
 +
in this connection,  $  M _ {k} M _ {l} \subset  M _ {k+} l $.
 +
The direct sum  $  \oplus _ {k = 0 }  ^  \infty  M _ {k} $
 +
forms a [[Graded algebra|graded algebra]] isomorphic to the ring of polynomials in the independent variables  $  G _ {4} $
 +
and  $  G _ {6} $(
 +
see [[#References|[3]]]).
 +
 
 +
For each  $  z \in H $
 +
the [[Complex torus|complex torus]]  $  \mathbf C / ( \mathbf Z + \mathbf Z z ) $
 +
is analytically isomorphic to the [[Elliptic curve|elliptic curve]] given by the equation
 +
 
 +
$$ \tag{2 }
 +
y  ^ {2} = 4 x  ^ {3} - g _ {2} ( z) x - g _ {3} ( z) ,
 +
$$
 +
 
 +
where  $  g _ {2} ( z) = 60 G _ {4} ( z) $,
 +
$  g _ {3} ( z) = 140 G _ {6} ( z) $.
 +
The [[Discriminant|discriminant]] of the cubic polynomial on the right-hand side of (2) is a parabolic modular form of weight 12:
 +
 
 +
$$
 +
 
 +
\frac{1}{2  ^ {4} }
 +
 
 +
( g _ {2}  ^ {3} - 27 g _ {3}  ^ {2} )  = \
 +
 
 +
\frac{( 2 \pi )  ^ {12} }{2  ^ {4} }
 +
q
 +
\prod _ { m= } 1 ^  \infty 
 +
( 1 - q  ^ {m} )  ^ {2k}  = \
 +
 
 +
\frac{( 2 \pi )  ^ {12} }{2  ^ {4} }
 +
 
 +
\sum _ { n= } 1 ^  \infty 
 +
\tau ( n) q  ^ {n} ,
 +
$$
 +
 
 +
where  $  \tau ( n) $
 +
is the [[Ramanujan function|Ramanujan function]] (see [[#References|[1]]]).
 +
 
 +
For each integer  $  N \geq  1 $
 +
modular forms of higher level  $  N $
 +
have been introduced, satisfying (1) only for elements
  
with  $ a , b , c , d $
+
$$  
real numbers (respectively, integers) and  $  ad - bc = 1 $.
+
\left (  
The modular group is a [[Discrete group of transformations|discrete group of transformations]] of the complex upper half-plane  $  H = \{ {z = x + iy } : {y > 0 } \} $(
+
\begin{array}{cc}
sometimes called the Lobachevskii plane or Poincaré upper half-plane) and has a presentation with generators $ T :  z \rightarrow z + 1 $
+
& b \\
and $ S : z \rightarrow - 1 / z $,
+
  c & d \\
and relations  $  S  ^ {2} = ( ST)  ^ {3} = 1 $,
+
\end{array}
that is, it is the free product of the cyclic group of order 2 generated by $  S $
+
  \right )
and the cyclic group of order 3 generated by  $ ST $(
+
$$
see [[#References|[2]]]).
 
  
Interest in the modular group is related to the study of modular functions (cf. [[Modular function|Modular function]]) whose Riemann surfaces (cf. [[Riemann surface|Riemann surface]]) are quotient spaces of H / \Gamma $,
+
of a congruence subgroup  $  \widetilde \Gamma  $
identified with a fundamental domain G $
+
of level  $  N $
of the modular group. The compactification $  X _ \Gamma  = ( H / \Gamma ) \cup \infty $
+
of the modular group. In this case, related to the modular form f $
is analytically isomorphic to the complex projective line, where the isomorphism is given by the fundamental modular function J ( z) $.
+
is the holomorphic differential f ( z)  ( d z )  ^ {k/2} $
The fundamental domain G $
+
on the modular curve $  X _ {\widetilde \Gamma   } $.
has finite Lobachevskii area:
+
A well-known example of a modular form of higher level is the [[Theta-series|theta-series]] f ( z) $
 +
associated to an integer-valued positive-definite quadratic form F ( x _ {1} \dots x _ {m} ) $:
  
 
$$  
 
$$  
\int\limits _ { G } y ^ {-} 2 d x d y  = 
+
f ( z)  = \  
\frac \pi {3}
+
\sum _
,
+
{x _ {1} , \dots, x _ {m} \in \mathbf Z }
 +
  \mathop{\rm exp} ( 2 \pi i F ( x _ {1} \dots x _ {m} ) ) ,
 
$$
 
$$
  
that is, the modular group is a [[Fuchsian group|Fuchsian group]] of the first kind (see [[#References|[3]]]). For the lattice L = \mathbf Z + \mathbf Z z $,
+
which is a modular form of higher level and of weight  $  k = m / 2 $.
z \in H $,  
+
In this example  $  a _ {n} $
the lattice L _ {1} = \mathbf Z + \mathbf Z \gamma ( z) $,
+
is the integer equal to the number of solutions of the Diophantine equation  $  F ( x _ {1} \dots x _ {m} ) = n $.
 +
 
 +
The theory of modular forms allows one to obtain an estimate, and sometimes a precise formula, for numbers of the type a _ {n} $(
 +
and congruences, such as the Ramanujan congruence  $  \tau ( n) \equiv \sum _ {d \mid  n }  d  ^ {11} $(
 +
$   \mathop{\rm mod} 691 $)),  
 +
and also to investigate their divisibility properties (see [[#References|[7]]]). Best estimates for numbers of the type a _ {n} $
 +
have been obtained (see [[#References|[2]]]).
 +
 
 +
Important arithmetic applications of modular forms are related to the [[Dirichlet series]]
  
 
$$  
 
$$  
\gamma = \  
+
L _ {f} ( s) = \  
\left (
+
\sum _ { n= } 1 ^  \infty 
 +
a _ {n} n  ^ {-} s ,
 +
$$
  
is equivalent to L $,  
+
i.e. the [[Mellin transform|Mellin transform]] of f $.
that is, can be obtained from L $
+
Such Dirichlet series have been the subject of detailed study (estimates of coefficients, analyticity properties, the functional equation, Euler product expansion) in view of the presence of a non-trivial ring of correspondences R $
by multiplying the elements of the latter by a non-zero complex number $  \lambda $,
+
on a modular curve. For a curve $ X _ \Gamma  $
$  \lambda = ( c z + d ^ {-} 1 $.
+
this ring is generated by the correspondence  $ T _ {n} ( z) = \sum _  \gamma \gamma ( z) $,
 +
where $ \gamma $
 +
runs through the set of all representatives of the elements of the quotient set
  
Corresponding to each lattice there is a complex torus  $  \mathbf C / L $
+
$$
that is analytically equivalent to a non-singular cubic curve (an [[Elliptic curve|elliptic curve]]). This gives a one-to-one correspondence between the points of the quotient space $  H / \Gamma $,
+
  \mathop{\rm SL} ( 2 , \mathbf Z ) \setminus
classes of equivalent lattices and the classes of (analytically) equivalent elliptic curves (see [[#References|[3]]]).
+
\{ {A \in M _ {2} ( \mathbf Z ) } : { \mathop{\rm det} A = n } \}
 +
.
 +
$$
  
The investigation of the subgroups of the modular group is of interest in the theory of modular forms and algebraic curves (cf. [[Algebraic curve|Algebraic curve]]; [[Modular form|Modular form]]). The principal congruence subgroup  $  \Gamma ( N) $
+
The correspondences induce linear operators (Hecke operators) acting on the space of modular forms. They are self-adjoint relative to the Peterson scalar product (see [[#References|[3]]], [[#References|[7]]]). Modular forms which are eigen functions of the Hecke operators are characterized by the fact that their Mellin transforms have Euler product expansions.
of level  $  N \geq  1 $(
 
$  N $
 
an integer) is the group of transformations  $  \gamma ( z) $
 
of the form (1) for which  $  a \equiv d \equiv 1 $(
 
$  \mathop{\rm mod}  N $),
 
$  c \equiv b \equiv 0 $(
 
$  \mathop{\rm mod}  N $).
 
A subgroup  $  \widetilde \Gamma  \subset  \Gamma $
 
is called a congruence subgroup if  $  \widetilde \Gamma  \supset \Gamma ( N) $
 
for some  $  N $;
 
the least such  $  N $
 
is called the level of  $  \widetilde \Gamma  $.
 
Examples of congruence subgroups of level  $  N $
 
are: the group  $  \Gamma _ {0} ( N) $
 
of transformations (1) with  $  c $
 
divisible by $  N $,
 
and the group  $  \Gamma _ {1} ( N) $
 
of transformations (1) with  $  a \equiv d \equiv 1 $(
 
$  \mathop{\rm mod}  N $)
 
and  $  c \equiv 0 $(
 
$  \mathop{\rm mod}  N $).
 
The [[Index|index]] of  $  \Gamma ( N) $
 
in the modular group is  $  ( N  ^ {3} / 2 ) \prod _ {p \mid  N }  ( 1 - p  ^ {-} 2 ) $
 
if  $  N > 2 $,
 
$  p $
 
is a prime number, and 6 if  $  N = 2 $;
 
thus, each congruence subgroup has finite index in the modular group.
 
  
Corresponding to each subgroup  $  \widetilde \Gamma  $
+
Another direction in the theory of modular forms is related to the study of modular curves and the associated fibrations, the Kuga varieties (cf. [[Modular curve|Modular curve]]), and also to the theory of infinite-dimensional representations of algebraic adèle groups. Here the theory of modular forms of one variable was successfully transferred to the case of several variables (see [[#References|[6]]]). A survey of the number-theoretic applications of modular forms is given in [[#References|[5]]].
of finite index in the modular group there is a complete algebraic curve  $  X _ {\widetilde \Gamma  }  $(
 
a [[Modular curve|modular curve]]), obtained from the quotient space  $  H / \widetilde \Gamma  $
 
and the covering  $  X _ {\widetilde \Gamma  }  \rightarrow X _  \Gamma  $.  
 
The study of the branches of this covering allows one to find generators and relations for the congruence subgroup  $  \widetilde \Gamma  $,
 
the genus of $  X _ {\widetilde \Gamma  }  $
 
and to prove that there are subgroups of finite index in the modular group which are not congruence subgroups (see [[#References|[3]]], [[#References|[8]]], [[#References|[7]]], Vol. 2). The study of presentations of the modular group was initiated in work (see [[#References|[4]]], [[#References|[6]]]) connected with the theory of modular forms. Such presentations were intensively studied within the theory of automorphic forms (see [[#References|[7]]] and [[Automorphic form|Automorphic form]]). Many results related to the modular group have been transferred to the case of arithmetic subgroups of algebraic Lie groups (cf. [[Arithmetic group|Arithmetic group]]; [[Lie algebra, algebraic|Lie algebra, algebraic]]).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer  (1964)  pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.-P. Serre,  "A course in arithmetic" , Springer (1973(Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Shimura,  "Introduction to the arithmetic theory of automorphic functions" , Math. Soc. Japan (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E. Hecke,  "Analytische Arithmetik der positiven quadratischen Formen" , ''Mathematische Werke'' , Vandenhoeck &amp; Ruprecht (1959pp. 789–918</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  F. Klein,  R. Fricke,  "Vorlesungen über die Theorie der elliptischen Modulfunktionen" , '''1–2''' , Teubner (1890–1892)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H.D. Kloosterman,  "The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups I, II" ''Ann. of Math.'' , '''47'''  (1946)  pp. 317–375; 376–417</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  J.-P. Serre (ed.)  P. Deligne (ed.)  W. Kuyk (ed.) , ''Modular functions of one variable. 1–6'' , ''Lect. notes in math.'' , '''320; 349; 350; 476; 601; 627''' , Springer  (1973–1977)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  R.A. Rankin,  "Modular forms and functions" , Cambridge Univ. Press  (1977)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer  (1964)  pp. Chapt.8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P. Deligne,  "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974pp. 273–307</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Lang,  "Introduction to modular forms" , Springer (1976)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.-P. Serre,  "A course in arithmetic" , Springer (1973(Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  O.M. Fenko,  "Applications of the theory of modular forms to number theory" ''J. Soviet Math.'' , '''14''' :  4 (1977pp. 1307–1362 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''15'''  (1977)  pp. 5–91</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  J.-P. Serre (ed.)  P. Deligne (ed.)  W. Kuyk (ed.) , ''Modular functions of one variable. 1–6'' , ''Lect. notes in math.'' , '''320; 349; 350; 476; 601; 627''' , Springer  (1973–1977)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A. Ogg,  "Modular forms and Dirichlet series" , Benjamin  (1969)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  R.A. Rankin,  "Modular forms and functions" , Cambridge Univ. Press  (1977)</TD></TR></table>
 +
 
 +
====Comments====
 +
A parabolic modular form is also called a cusp form.

Revision as of 14:25, 7 June 2020


of one complex variable, elliptic modular form

A function $ f $ on the upper half-plane $ H = \{ {z \in \mathbf C } : { \mathop{\rm Im} z > 0 } \} $ satisfying for some fixed $ k $ the automorphicity condition

$$ \tag{1 } f \left ( \frac{a z + b }{c z + d } \right ) = \ ( c z + d ) ^ {k} f ( z) $$

for any element

$$ \left ( \begin{array}{cc} a & b \\ c & d \\ \end{array} \right ) \ \in \mathop{\rm SL} _ {2} ( \mathbf Z ) $$

( $ \mathop{\rm SL} _ {2} ( \mathbf Z ) $ is the group of integer-valued matrices with determinant $ a d - b c = 1 $), and such that

$$ f ( z) = \ \sum _ { n= } 0 ^ \infty a _ {n} q ^ {n} , $$

where $ q = \mathop{\rm exp} ( 2 \pi i z ) $, $ z \in H $, $ a _ {n} \in \mathbf C $. The integer $ k \geq 0 $ is called the weight of the modular form $ f $. If $ a _ {0} = 0 $, then $ f $ is called a parabolic modular form. There is also [8] a definition of modular forms for all real values of $ k $.

An example of a modular form of weight $ k \geq 4 $ is given by the Eisenstein series (see [4])

$$ G _ {k} ( z) = \ \sum _ {m _ {1} , m _ {2} \in \mathbf Z } {} ^ {*} ( m _ {1} + m _ {2} z ) ^ {-} k , $$

where the asterisk means that the pair $ ( m _ {1} , m _ {2} ) = ( 0 , 0 ) $ is excluded from summation. Here $ G _ {k} ( z) \equiv 0 $ for odd $ k $ and

$$ G _ {k} ( z) = \ \frac{2 ( 2 \pi i ) ^ {k} }{( k - 1 ) ! } \left [ - \frac{B _ {k} }{2 k } + \sum _ { n= } 1 ^ \infty \sigma _ {k-} 1 ( n) q ^ {n} \right ] , $$

where $ \sigma _ {k-} 1 ( n) = \sum _ {d \mid n } d ^ {k-} 1 $ and $ B _ {k} $ is the $ k $- th Bernoulli number (cf. Bernoulli numbers).

The set of modular forms of weight $ k $ is a complex vector space, denoted by $ M _ {k} $; in this connection, $ M _ {k} M _ {l} \subset M _ {k+} l $. The direct sum $ \oplus _ {k = 0 } ^ \infty M _ {k} $ forms a graded algebra isomorphic to the ring of polynomials in the independent variables $ G _ {4} $ and $ G _ {6} $( see [3]).

For each $ z \in H $ the complex torus $ \mathbf C / ( \mathbf Z + \mathbf Z z ) $ is analytically isomorphic to the elliptic curve given by the equation

$$ \tag{2 } y ^ {2} = 4 x ^ {3} - g _ {2} ( z) x - g _ {3} ( z) , $$

where $ g _ {2} ( z) = 60 G _ {4} ( z) $, $ g _ {3} ( z) = 140 G _ {6} ( z) $. The discriminant of the cubic polynomial on the right-hand side of (2) is a parabolic modular form of weight 12:

$$ \frac{1}{2 ^ {4} } ( g _ {2} ^ {3} - 27 g _ {3} ^ {2} ) = \ \frac{( 2 \pi ) ^ {12} }{2 ^ {4} } q \prod _ { m= } 1 ^ \infty ( 1 - q ^ {m} ) ^ {2k} = \ \frac{( 2 \pi ) ^ {12} }{2 ^ {4} } \sum _ { n= } 1 ^ \infty \tau ( n) q ^ {n} , $$

where $ \tau ( n) $ is the Ramanujan function (see [1]).

For each integer $ N \geq 1 $ modular forms of higher level $ N $ have been introduced, satisfying (1) only for elements

$$ \left ( \begin{array}{cc} a & b \\ c & d \\ \end{array} \right ) $$

of a congruence subgroup $ \widetilde \Gamma $ of level $ N $ of the modular group. In this case, related to the modular form $ f $ is the holomorphic differential $ f ( z) ( d z ) ^ {k/2} $ on the modular curve $ X _ {\widetilde \Gamma } $. A well-known example of a modular form of higher level is the theta-series $ f ( z) $ associated to an integer-valued positive-definite quadratic form $ F ( x _ {1} \dots x _ {m} ) $:

$$ f ( z) = \ \sum _ {x _ {1} , \dots, x _ {m} \in \mathbf Z } \mathop{\rm exp} ( 2 \pi i F ( x _ {1} \dots x _ {m} ) ) , $$

which is a modular form of higher level and of weight $ k = m / 2 $. In this example $ a _ {n} $ is the integer equal to the number of solutions of the Diophantine equation $ F ( x _ {1} \dots x _ {m} ) = n $.

The theory of modular forms allows one to obtain an estimate, and sometimes a precise formula, for numbers of the type $ a _ {n} $( and congruences, such as the Ramanujan congruence $ \tau ( n) \equiv \sum _ {d \mid n } d ^ {11} $( $ \mathop{\rm mod} 691 $)), and also to investigate their divisibility properties (see [7]). Best estimates for numbers of the type $ a _ {n} $ have been obtained (see [2]).

Important arithmetic applications of modular forms are related to the Dirichlet series

$$ L _ {f} ( s) = \ \sum _ { n= } 1 ^ \infty a _ {n} n ^ {-} s , $$

i.e. the Mellin transform of $ f $. Such Dirichlet series have been the subject of detailed study (estimates of coefficients, analyticity properties, the functional equation, Euler product expansion) in view of the presence of a non-trivial ring of correspondences $ R $ on a modular curve. For a curve $ X _ \Gamma $ this ring is generated by the correspondence $ T _ {n} ( z) = \sum _ \gamma \gamma ( z) $, where $ \gamma $ runs through the set of all representatives of the elements of the quotient set

$$ \mathop{\rm SL} ( 2 , \mathbf Z ) \setminus \{ {A \in M _ {2} ( \mathbf Z ) } : { \mathop{\rm det} A = n } \} . $$

The correspondences induce linear operators (Hecke operators) acting on the space of modular forms. They are self-adjoint relative to the Peterson scalar product (see [3], [7]). Modular forms which are eigen functions of the Hecke operators are characterized by the fact that their Mellin transforms have Euler product expansions.

Another direction in the theory of modular forms is related to the study of modular curves and the associated fibrations, the Kuga varieties (cf. Modular curve), and also to the theory of infinite-dimensional representations of algebraic adèle groups. Here the theory of modular forms of one variable was successfully transferred to the case of several variables (see [6]). A survey of the number-theoretic applications of modular forms is given in [5].

References

[1] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 1 , Springer (1964) pp. Chapt.8
[2] P. Deligne, "La conjecture de Weil I" Publ. Math. IHES , 43 (1974) pp. 273–307
[3] S. Lang, "Introduction to modular forms" , Springer (1976)
[4] J.-P. Serre, "A course in arithmetic" , Springer (1973) (Translated from French)
[5] O.M. Fenko, "Applications of the theory of modular forms to number theory" J. Soviet Math. , 14 : 4 (1977) pp. 1307–1362 Itogi Nauk. i Tekhn. Algebra Topol. Geom. , 15 (1977) pp. 5–91
[6] J.-P. Serre (ed.) P. Deligne (ed.) W. Kuyk (ed.) , Modular functions of one variable. 1–6 , Lect. notes in math. , 320; 349; 350; 476; 601; 627 , Springer (1973–1977)
[7] A. Ogg, "Modular forms and Dirichlet series" , Benjamin (1969)
[8] R.A. Rankin, "Modular forms and functions" , Cambridge Univ. Press (1977)

Comments

A parabolic modular form is also called a cusp form.

How to Cite This Entry:
Modular group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modular_group&oldid=47871
This article was adapted from an original article by A.A. Panchishkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article