Namespaces
Variants
Actions

Difference between revisions of "Tate algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922401.png" /> be a field which is complete with respect to an ultrametric valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922402.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922403.png" />). The valuation ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922404.png" /> has a unique maximal ideal, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922405.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png" /> is called the residue field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922407.png" />.
+
<!--
 +
t0922401.png
 +
$#A+1 = 85 n = 4
 +
$#C+1 = 85 : ~/encyclopedia/old_files/data/T092/T.0902240 Tate algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Examples of such fields are the local fields, i.e. finite extensions of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922408.png" />-adic number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922409.png" />, or the field of Laurent series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224011.png" /> with coefficients in the finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224012.png" /> (cf. also [[Local field|Local field]]).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224013.png" /> denote indeterminates. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224014.png" /> denotes the algebra of all power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224015.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224016.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224017.png" />) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224018.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224019.png" />). The norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224020.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224021.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224022.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224024.png" /> is an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224026.png" /> is easily seen to be the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224027.png" />.
+
Let $  K $
 +
be a field which is complete with respect to an [[ultrametric]] valuation  $  | \cdot | $(
 +
i.e. $  | x+ y | \leq  \max ( | x | , | y | ) $).  
 +
The valuation ring $  R= \{ {a \in K } : {| a | \leq  1 } \} $
 +
has a unique maximal ideal, $  m= \{ {a \in K } : {| a | < 1 } \} $.  
 +
The field  $  k= R/m $
 +
is called the residue field of $  K $.
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224028.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224029.png" /> is called the free Tate algebra. An affinoid algebra, or Tate algebra, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224031.png" /> is a finite extension of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224032.png" /> (i.e. there is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224033.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224034.png" /> which makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224035.png" /> into a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224036.png" />-module). The space of all maximal ideals, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224037.png" /> of a Tate algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224038.png" /> is called an affinoid space.
+
Examples of such fields are the local fields, i.e. finite extensions of the  $  p $-
 +
adic number field  $  \mathbf Q _ {p} $,
 +
or the field of Laurent series  $  \mathbf F _ {p} (( t)) $
 +
in  $  t $
 +
with coefficients in the finite field  $  \mathbf F _ {p} = \mathbf Z / p \mathbf Z $(
 +
cf. also [[Local field|Local field]]).
  
A rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224039.png" /> is obtained by glueing affinoid spaces. Every algebraic variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224040.png" /> has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224041.png" />.
+
Let  $  z _ {1} \dots z _ {n} $
 +
denote indeterminates. Then  $  T _ {n} ( K) = K \langle  z _ {1} \dots z _ {n} \rangle $
 +
denotes the algebra of all power series  $  \sum a _  \alpha  z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $
 +
with  $  a _  \alpha  \in K $(
 +
$  \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $)
 +
such that  $  \lim\limits _ {| \alpha | \rightarrow \infty }  a _  \alpha  = 0 $(
 +
$  | \alpha | = \sum \alpha _ {i} $).  
 +
The norm on  $  T _ {n} = T _ {n} ( K) $
 +
is given by $  \| \sum a _  \alpha  z  ^  \alpha  \| = \max | a _  \alpha  | $.  
 +
The ring  $  \{ {f \in T _ {n} } : {\| f \| \leq  1 } \} $
 +
is denoted by $  T _ {n}  ^ {o} $,
 +
and $  T _ {n}  ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $
 +
is an ideal of  $  T _ {n}  ^ {o} $.  
 +
Then  $  \widetilde{T}  _ {n} = T _ {n}  ^ {o} / T _ {n}  ^ {oo} $
 +
is easily seen to be the ring of polynomials  $  k[ z _ {1} \dots z _ {n} ] $.
  
The theory of formal schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224042.png" /> (the valuation ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224043.png" />) is close to that of rigid analytic spaces. This can be seen as follows.
+
The $  K $-
 +
algebra  $  T _ {n} ( K) $
 +
is called the free Tate algebra. An affinoid algebra, or Tate algebra,  $  A $
 +
over  $  K $
 +
is a finite extension of some  $  T _ {n} ( K) $(
 +
i.e. there is a homomorphism of  $  K $-
 +
algebras  $  T _ {n} \rightarrow A $
 +
which makes  $  A $
 +
into a finitely-generated  $  T _ {n} $-
 +
module). The space of all maximal ideals,  $  \mathop{\rm Spm} ( A) $
 +
of a Tate algebra  $  A $
 +
is called an affinoid space.
  
Fix an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224044.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224045.png" />. The completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224046.png" /> with respect to the topology given by the ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224047.png" /> is the ring of strict power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224048.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224049.png" />. Now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224050.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224051.png" /> is the localization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224052.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224053.png" />. So one can view <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224054.png" /> as the  "general fibre"  of the formal scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224055.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224056.png" />. More generally, any formal scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224057.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224058.png" /> gives rise to a rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224059.png" />, the "general fibre" of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224060.png" />. Non-isomorphic formal schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224061.png" /> can have the same associated rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224062.png" />. Further, any reasonable rigid analytic space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224063.png" /> is associated to some formal scheme over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224064.png" />.
+
A [[rigid analytic space]] over  $ K $
 +
is obtained by glueing affinoid spaces. Every algebraic variety over $  K $
 +
has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $  K $.
  
Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224065.png" />. Some of the most important are: Weierstrass preparation and division holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224066.png" /> (cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224067.png" /> is perfect; for any maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224068.png" /> of an affinoid algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224069.png" /> the quotient field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224070.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224071.png" />; many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224072.png" /> on an affinoid space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224073.png" /> is associated to a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224074.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224075.png" /> (further: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224076.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224077.png" />).
+
The theory of formal schemes over $  R $(
 +
the valuation ring of $  K $)
 +
is close to that of rigid analytic spaces. This can be seen as follows.
  
Another interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224078.png" /> is: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224079.png" /> consists of all "holomorphic functions" on the polydisc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224080.png" />. This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224081.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224082.png" /> be a local field with algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224083.png" />. Then
+
Fix an element  $  \pi \in R $
 +
with  $  0 < | \pi | < 1 $.  
 +
The completion of  $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $
 +
with respect to the topology given by the ideals  $  \{ {\pi  ^ {m} R _ {n} } : {m> 0 } \} $
 +
is the ring of strict power series  $  R\langle  z _ {1} \dots z _ {n} \rangle $
 +
over  $  R $.  
 +
Now  $  R\langle  z _ {1} \dots z _ {n} \rangle = T _ {n}  ^ {o} $,
 +
and  $  T _ {n} ( K) $
 +
is the localization of  $  R\langle  z _ {1} \dots z _ {n} \rangle $
 +
with respect to  $  \pi $.  
 +
So one can view  $  \mathop{\rm Spm} ( T _ {n} ( K)) $
 +
as the  "general fibre" of the formal scheme  $  \mathop{\rm Spf} ( R\langle  z _ {1} \dots z _ {n} \rangle) $
 +
over  $  R $.  
 +
More generally, any formal scheme  $  X $
 +
over  $  R $
 +
gives rise to a rigid analytic space over  $  K $,
 +
the  "general fibre" of  $  X $.  
 +
Non-isomorphic formal schemes over  $  R $
 +
can have the same associated rigid analytic space over  $  K $.  
 +
Further, any reasonable rigid analytic space over  $  K $
 +
is associated to some formal scheme over  $  R $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224084.png" /></td> </tr></table>
+
Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over  $  K $.
 +
Some of the most important are: Weierstrass preparation and division holds for  $  T _ {n} ( K) $(
 +
cf. also [[Weierstrass theorem|Weierstrass theorem]]); affinoid algebras are Noetherian rings, and even excellent rings if the field  $  K $
 +
is perfect; for any maximal ideal  $  M $
 +
of an affinoid algebra  $  A $
 +
the quotient field  $  R/M $
 +
is a finite extension of  $  K $;  
 +
many [[Finiteness theorems|finiteness theorems]]; any coherent sheaf  $  S $
 +
on an affinoid space  $  \mathop{\rm Spm} ( A) $
 +
is associated to a finitely-generated  $  A $-
 +
module  $  M= H  ^ {0} ( S) $(
 +
further: $  H  ^ {i} ( S)= 0 $
 +
for  $  i \neq 0 $).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224085.png" /></td> </tr></table>
+
Another interpretation of  $  T _ {n} ( K) $
 +
is:  $  T _ {n} ( K) $
 +
consists of all  "holomorphic functions" on the polydisc  $  \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all }  | z _ {i} | \leq  1 } \} $.
 +
This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces  $  \Omega  ^ {(} n) $.
 +
Let  $  K $
 +
be a local field with algebraic closure  $  \overline{K}\; $.
 +
Then
 +
 
 +
$$
 +
\Omega  ^ {(} n) =
 +
$$
 +
 
 +
$$
 +
= \
 +
\{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; }
 +
^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0
 +
\textrm{ for  all  }  ( \lambda _ {0} \dots \lambda _ {n} ) \in P  ^ {n} ( K) } \}
 +
$$
  
 
is a Drinfel'd symmetric space.
 
is a Drinfel'd symmetric space.
  
Spaces of this type have been used for the construction of Tate's elliptic curves, Mumford curves and surfaces, Shimura curves and varieties, etc.
+
Spaces of this type have been used for the construction of Tate's elliptic curves (cf. [[Tate curve]]), Mumford curves and surfaces, Shimura curves and varieties, etc.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Bosch,  U. Güntzer,  R. Remmert,  "Non-Archimedean analysis" , Springer  (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.G. Drinfel'd,  "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions"  ''Funct. Anal. Appl.'' , '''10''' :  2  (1976)  pp. 107–115  ''Funkts. Anal. Prilozhen.'' , '''10''' :  2  pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Faltings,  "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer  (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Fresnel,  M. van der Put,  "Géométrie analytique rigide et applications" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Gerritzen,  M. van der Put,  "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer  (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D. Mumford,  "An analytic construction of degenerating curves over complete local fields"  ''Compos. Math.'' , '''24'''  (1972)  pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Mumford,  "An analytic construction of degenerating abelian varieties over complete rings"  ''Compos. Math.'' , '''24'''  (1972)  pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  D. Mumford,  "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />"  ''Amer. J. Math.'' , '''101'''  (1979)  pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M. Raynaud,  "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars  (1971)  pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  J. Tate,  "Rigid analytic spaces"  ''Invent. Math.'' , '''12'''  (1971)  pp. 257–289</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Bosch,  U. Güntzer,  R. Remmert,  "Non-Archimedean analysis" , Springer  (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  V.G. Drinfel'd,  "Coverings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224086.png" />-adic symmetric regions"  ''Funct. Anal. Appl.'' , '''10''' :  2  (1976)  pp. 107–115  ''Funkts. Anal. Prilozhen.'' , '''10''' :  2  pp. 29–41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Faltings,  "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , ''Lect. notes in math.'' , '''1111''' , Springer  (1984)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Fresnel,  M. van der Put,  "Géométrie analytique rigide et applications" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Gerritzen,  M. van der Put,  "Schottky groups and Mumford curves" , ''Lect. notes in math.'' , '''817''' , Springer  (1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D. Mumford,  "An analytic construction of degenerating curves over complete local fields"  ''Compos. Math.'' , '''24'''  (1972)  pp. 129–174</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D. Mumford,  "An analytic construction of degenerating abelian varieties over complete rings"  ''Compos. Math.'' , '''24'''  (1972)  pp. 239–272</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  D. Mumford,  "An algebraic surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224087.png" /> ample, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t09224089.png" />"  ''Amer. J. Math.'' , '''101'''  (1979)  pp. 233–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M. Raynaud,  "Variétés abéliennes en géométrie rigide" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''2''' , Gauthier-Villars  (1971)  pp. 473–477</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  J. Tate,  "Rigid analytic spaces"  ''Invent. Math.'' , '''12'''  (1971)  pp. 257–289</TD></TR></table>

Latest revision as of 08:25, 6 June 2020


Let $ K $ be a field which is complete with respect to an ultrametric valuation $ | \cdot | $( i.e. $ | x+ y | \leq \max ( | x | , | y | ) $). The valuation ring $ R= \{ {a \in K } : {| a | \leq 1 } \} $ has a unique maximal ideal, $ m= \{ {a \in K } : {| a | < 1 } \} $. The field $ k= R/m $ is called the residue field of $ K $.

Examples of such fields are the local fields, i.e. finite extensions of the $ p $- adic number field $ \mathbf Q _ {p} $, or the field of Laurent series $ \mathbf F _ {p} (( t)) $ in $ t $ with coefficients in the finite field $ \mathbf F _ {p} = \mathbf Z / p \mathbf Z $( cf. also Local field).

Let $ z _ {1} \dots z _ {n} $ denote indeterminates. Then $ T _ {n} ( K) = K \langle z _ {1} \dots z _ {n} \rangle $ denotes the algebra of all power series $ \sum a _ \alpha z _ {1} ^ {\alpha _ {1} } \dots z _ {n} ^ {\alpha _ {n} } $ with $ a _ \alpha \in K $( $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $) such that $ \lim\limits _ {| \alpha | \rightarrow \infty } a _ \alpha = 0 $( $ | \alpha | = \sum \alpha _ {i} $). The norm on $ T _ {n} = T _ {n} ( K) $ is given by $ \| \sum a _ \alpha z ^ \alpha \| = \max | a _ \alpha | $. The ring $ \{ {f \in T _ {n} } : {\| f \| \leq 1 } \} $ is denoted by $ T _ {n} ^ {o} $, and $ T _ {n} ^ {oo} = \{ {f \in T _ {n} } : {\| f \| < 1 } \} $ is an ideal of $ T _ {n} ^ {o} $. Then $ \widetilde{T} _ {n} = T _ {n} ^ {o} / T _ {n} ^ {oo} $ is easily seen to be the ring of polynomials $ k[ z _ {1} \dots z _ {n} ] $.

The $ K $- algebra $ T _ {n} ( K) $ is called the free Tate algebra. An affinoid algebra, or Tate algebra, $ A $ over $ K $ is a finite extension of some $ T _ {n} ( K) $( i.e. there is a homomorphism of $ K $- algebras $ T _ {n} \rightarrow A $ which makes $ A $ into a finitely-generated $ T _ {n} $- module). The space of all maximal ideals, $ \mathop{\rm Spm} ( A) $ of a Tate algebra $ A $ is called an affinoid space.

A rigid analytic space over $ K $ is obtained by glueing affinoid spaces. Every algebraic variety over $ K $ has a unique structure as a rigid analytic space. Rigid analytic spaces and affinoid algebras were introduced by J. Tate in order to study degenerations of curves and Abelian varieties over $ K $.

The theory of formal schemes over $ R $( the valuation ring of $ K $) is close to that of rigid analytic spaces. This can be seen as follows.

Fix an element $ \pi \in R $ with $ 0 < | \pi | < 1 $. The completion of $ R _ {n} = R[ z _ {1} \dots z _ {n} ] $ with respect to the topology given by the ideals $ \{ {\pi ^ {m} R _ {n} } : {m> 0 } \} $ is the ring of strict power series $ R\langle z _ {1} \dots z _ {n} \rangle $ over $ R $. Now $ R\langle z _ {1} \dots z _ {n} \rangle = T _ {n} ^ {o} $, and $ T _ {n} ( K) $ is the localization of $ R\langle z _ {1} \dots z _ {n} \rangle $ with respect to $ \pi $. So one can view $ \mathop{\rm Spm} ( T _ {n} ( K)) $ as the "general fibre" of the formal scheme $ \mathop{\rm Spf} ( R\langle z _ {1} \dots z _ {n} \rangle) $ over $ R $. More generally, any formal scheme $ X $ over $ R $ gives rise to a rigid analytic space over $ K $, the "general fibre" of $ X $. Non-isomorphic formal schemes over $ R $ can have the same associated rigid analytic space over $ K $. Further, any reasonable rigid analytic space over $ K $ is associated to some formal scheme over $ R $.

Affinoid spaces and affinoid algebras have many properties in common with affine spaces and affine rings over $ K $. Some of the most important are: Weierstrass preparation and division holds for $ T _ {n} ( K) $( cf. also Weierstrass theorem); affinoid algebras are Noetherian rings, and even excellent rings if the field $ K $ is perfect; for any maximal ideal $ M $ of an affinoid algebra $ A $ the quotient field $ R/M $ is a finite extension of $ K $; many finiteness theorems; any coherent sheaf $ S $ on an affinoid space $ \mathop{\rm Spm} ( A) $ is associated to a finitely-generated $ A $- module $ M= H ^ {0} ( S) $( further: $ H ^ {i} ( S)= 0 $ for $ i \neq 0 $).

Another interpretation of $ T _ {n} ( K) $ is: $ T _ {n} ( K) $ consists of all "holomorphic functions" on the polydisc $ \{ {( z _ {1} \dots z _ {n} ) \in K } : {\textrm{ all } | z _ {i} | \leq 1 } \} $. This interpretation is useful for finding the holomorphic functions on more complicated spaces like Drinfel'd's symmetric spaces $ \Omega ^ {(} n) $. Let $ K $ be a local field with algebraic closure $ \overline{K}\; $. Then

$$ \Omega ^ {(} n) = $$

$$ = \ \{ {( x _ {0} \dots x _ {n} ) \in P _ {\overline{K}\; } ^ {n} } : {\sum \lambda _ {i} x _ {i} \neq 0 \textrm{ for all } ( \lambda _ {0} \dots \lambda _ {n} ) \in P ^ {n} ( K) } \} $$

is a Drinfel'd symmetric space.

Spaces of this type have been used for the construction of Tate's elliptic curves (cf. Tate curve), Mumford curves and surfaces, Shimura curves and varieties, etc.

References

[a1] S. Bosch, U. Güntzer, R. Remmert, "Non-Archimedean analysis" , Springer (1984)
[a2] V.G. Drinfel'd, "Coverings of -adic symmetric regions" Funct. Anal. Appl. , 10 : 2 (1976) pp. 107–115 Funkts. Anal. Prilozhen. , 10 : 2 pp. 29–41
[a3] G. Faltings, "Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten" , Lect. notes in math. , 1111 , Springer (1984)
[a4] J. Fresnel, M. van der Put, "Géométrie analytique rigide et applications" , Birkhäuser (1981)
[a5] L. Gerritzen, M. van der Put, "Schottky groups and Mumford curves" , Lect. notes in math. , 817 , Springer (1980)
[a6] D. Mumford, "An analytic construction of degenerating curves over complete local fields" Compos. Math. , 24 (1972) pp. 129–174
[a7] D. Mumford, "An analytic construction of degenerating abelian varieties over complete rings" Compos. Math. , 24 (1972) pp. 239–272
[a8] D. Mumford, "An algebraic surface with ample, , " Amer. J. Math. , 101 (1979) pp. 233–244
[a9] M. Raynaud, "Variétés abéliennes en géométrie rigide" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 2 , Gauthier-Villars (1971) pp. 473–477
[a10] J. Tate, "Rigid analytic spaces" Invent. Math. , 12 (1971) pp. 257–289
How to Cite This Entry:
Tate algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tate_algebra&oldid=11874
This article was adapted from an original article by M. van der Put (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article