Skorokhod stochastic differential equation
An equation of the form
where the initial condition X _ {0} and/or the coefficients \sigma and b are random, the solution X _ {t} is not adapted (cf. also Optional random process) to the Brownian motion W _ {t} , and the stochastic integral is interpreted in the sense of Skorokhod (see Skorokhod integral; Stochastic integral; [a5]). One cannot use a fixed-point argument to show the existence and uniqueness of the solution, as it is done for the adapted Itô stochastic equations, because the Skorokhod integral is not continuous in the L ^ {2} - norm.
If b \equiv 0 , and \sigma ( s,x ) = \sigma _ {s} x , where \sigma _ {s} is a deterministic function, (a1) has an explicit solution given by (see [a1])
\tag{a2 } X _ {t} = X _ {0} \left ( \omega _ \cdot - \int\limits _ { 0 } ^ \cdot {\sigma _ {s} } {ds } \right ) \times
\times { \mathop{\rm exp} } \left ( \int\limits _ { 0 } ^ { t } {\sigma _ {s} } {dW _ {s} } - { \frac{1}{2} } \int\limits _ { 0 } ^ { t } {\sigma _ {s} ^ {2} } {ds } \right ) .
When \sigma _ {s} is random, a similar formula holds but the martingale exponential should be replaced by the Girsanov density associated with the anticipating shift \omega _ {t} \mapsto \omega _ {t} - \int _ {0} ^ {t} {\sigma _ {s} } {ds } ( see [a3]).
Using the notion of Wick product, introduced in the context of quantum field theory, the process (a2) can be rewritten as
\tag{a3 } X _ {t} = X _ {0} \dia e ^ {\int\limits _ { 0 } ^ { t } {\sigma _ {s} } {dW _ {s} } - { \frac{1}{2} } \int\limits _ { 0 } ^ { t } {\sigma ^ {2} _ {s} } {ds } } .
Formula (a3) can be used to solve linear multi-dimensional Skorokhod equations (see [a4]). One-dimensional non-linear Skorokhod stochastic differential equations are studied in [a2], and a local existence and uniqueness result is obtained by means of the pathwise representation of one-dimensional diffusions.
References
[a1] | R. Buckdahn, "Linear Skorohod stochastic differential equations" Probab. Th. Rel. Fields , 90 (1991) pp. 223–240 |
[a2] | R. Buckdahn, "Skorohod stochastic differential equations of diffusion type" Probab. Th. Rel. Fields , 92 (1993) pp. 297–324 |
[a3] | R. Buckdahn, "Anticipative Girsanov transformations and Skorohod stochastic differential equations" , Memoirs , 533 , Amer. Math. Soc. (1994) |
[a4] | R. Buckdahn, D. Nualart, "Linear stochastic differential equations and Wick products" Probab. Th. Rel. Fields , 99 (1994) pp. 501–526 |
[a5] | A.V. Skorokhod, "On a generalization of a stochastic integral" Th. Probab. Appl. , 20 (1975) pp. 219–233 |
Skorokhod stochastic differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skorokhod_stochastic_differential_equation&oldid=48731