# Sum of divisors

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

2010 Mathematics Subject Classification: Primary: 11A25 Secondary: 11A51 [MSN][ZBL]

of a natural number $n$

The sum of the positive integers divisors of a natural number $n$, including $1$ and $n$: $$\sigma(n) = \sum_{d | n} d \ .$$ More generally, the function $\sigma_k$ is defined as $$\sigma_k(n) = \sum_{d | n} d^k \ .$$ so that $\sigma = \sigma_1$ and the number of divisors function $\tau = \sigma_0$.

These are multiplicative arithmetic functions with Dirichlet series $$\sum_{n=1}^\infty \sigma_k(n) n^{-s} = \prod_p \left({(1-p^{-s})(1-p^{k-s}) }\right)^{-1} = \zeta(s) \zeta(s-k)\ .$$

The average order of $\sigma(n)$ is given by $$\sum_{n \le x} \sigma(n) = \frac{\pi^2}{12} x^2 + O(x \log x) \ .$$

There are a number of well-known classes of number characterised by their divisor sums.

A perfect number $n$ is the sum of its aliquot divisors (those divisors other than $n$ itself), so $\sigma(n) = 2n$. The even perfect numbers are characterised in terms of Mersenne primes $P = 2^p-1$ as $n = 2^{p-1}.P$: it is not known if there are any odd perfect numbers. An almost perfect number $n$ similarly has the property that $\sigma(n) = 2n-1$: these include the powers of 2. A quasiperfect number is defined by $\sigma(n) = 2n+1$: it is not known if any exists. See also Descartes number.

How to Cite This Entry:
Sum of divisors. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sum_of_divisors&oldid=37103