Namespaces
Variants
Actions

Difference between revisions of "Sum function of a function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎Comments: link)
m (tex encoded by computer)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910801.png" />''
+
<!--
 +
s0910801.png
 +
$#A+1 = 66 n = 0
 +
$#C+1 = 66 : ~/encyclopedia/old_files/data/S091/S.0901080 Sum function of a function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910802.png" /> that denotes the sum of the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910803.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910804.png" /> on the set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910806.png" />. Sum functions are one of the basic means of expressing various properties of sequences of numbers.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Examples of sum functions: the number of prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910807.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910808.png" /> — the [[Chebyshev function|Chebyshev function]]; the number of divisors of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s0910809.png" />, etc. (see [[#References|[1]]], [[#References|[2]]]).
+
'' $  f $''
  
The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108010.png" />.
+
The function of  $  x \geq  1 $
 +
that denotes the sum of the values  $  f( n) $
 +
of the function  $  f $
 +
on the set of natural numbers  $  n \leq  x $,
 +
$  \sum _ {n\leq } x f( n) $.
 +
Sum functions are one of the basic means of expressing various properties of sequences of numbers.
 +
 
 +
Examples of sum functions: the number of prime numbers  $  \leq  x $;
 +
$  \psi ( x) = \sum _ {n\leq } x \Lambda ( n) $—
 +
the [[Chebyshev function|Chebyshev function]]; the number of divisors of all  $  n \leq  x $,
 +
etc. (see [[#References|[1]]], [[#References|[2]]]).
 +
 
 +
The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of $  x $.
  
 
The [[Cauchy integral theorem|Cauchy integral theorem]] and [[Dirichlet series|Dirichlet series]] of the form
 
The [[Cauchy integral theorem|Cauchy integral theorem]] and [[Dirichlet series|Dirichlet series]] of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108011.png" /></td> </tr></table>
+
$$
 +
F( s)  = \sum _ { n= } 1 ^  \infty  f( n) n  ^ {-} s
 +
$$
  
form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108012.png" />, then for a non-integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108013.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108014.png" />, the identity
+
form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for $  \mathop{\rm Re}  s > \sigma _ {0} \geq  1 $,  
 +
then for a non-integer $  x $,  
 +
and $  c > \sigma _ {0} $,  
 +
the identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108015.png" /></td> </tr></table>
+
$$
 +
\sum _ { n\leq  } x f( n)  =
 +
\frac{1}{2 \pi i }
 +
\int\limits _ {c- i \infty } ^ { {c+ }  i \infty } F( s)
 +
\frac{x
 +
^ {s} }{s}
 +
  ds
 +
$$
  
holds; a corresponding estimate of the sum function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108016.png" /> is obtained from this by analytic continuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108017.png" /> by shifting the integration path to the left to a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108018.png" /> and estimating the integral along the new path. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108019.png" />, for example, the integration can be shifted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108020.png" />, which gives the Riemann–von Mangoldt formula for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108021.png" />. Of the common applications of the method, the following theorem is known.
+
holds; a corresponding estimate of the sum function of $  f $
 +
is obtained from this by analytic continuation of $  F( s) $
 +
by shifting the integration path to the left to a certain $  \mathop{\rm Re}  s = \sigma _ {1} < 0 $
 +
and estimating the integral along the new path. If $  f( n) = \Lambda ( n) $,  
 +
for example, the integration can be shifted to $  \mathop{\rm Re}  s = - \infty $,  
 +
which gives the Riemann–von Mangoldt formula for $  \psi ( x) $.  
 +
Of the common applications of the method, the following theorem is known.
  
 
===Assumptions:===
 
===Assumptions:===
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108023.png" /> are complex numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108026.png" /> are real numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108028.png" /> are positive numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108030.png" /> are integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108032.png" /> is the gamma-function, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108033.png" />.
+
$  f( n) $,  
 +
$  l _ {n} $
 +
are complex numbers, $  \alpha \geq  0 $,  
 +
$  \alpha _ {r} $,  
 +
$  \gamma _ {r} $
 +
are real numbers, $  \sigma _ {r} $,  
 +
$  \beta _ {r} $
 +
are positive numbers, $  \mu $
 +
and $  \nu $
 +
are integers $  \geq  1 $,  
 +
$  \Gamma $
 +
is the gamma-function, and $  \lambda _ {1} < \lambda _ {2} < \dots $.
  
1) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108035.png" />;
+
1) For any $  \epsilon > 0 $,  
 +
$  f( n) \ll  n ^ {\alpha + \epsilon } $;
  
 
2) the function
 
2) the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108036.png" /></td> </tr></table>
+
$$
 +
F( s)  = \sum _ { n= } 1 ^  \infty  f( n) n  ^ {-} s ,
 +
$$
  
defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108038.png" />, is meromorphic in the whole plane, and has a finite number of poles in the strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108039.png" />;
+
defined for $  s = \sigma + it $,  
 +
$  \sigma > 1 + \alpha $,  
 +
is meromorphic in the whole plane, and has a finite number of poles in the strip $  \sigma _ {1} \leq  \sigma \leq  \sigma _ {2} $;
  
3) the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108040.png" /> converges absolutely when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108041.png" />;
+
3) the series $  \sum _ {n=} 1 ^  \infty  l _ {n}  \mathop{\rm exp} ( \lambda _ {n} s) $
 +
converges absolutely when $  \sigma < 0 $;
  
4) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108042.png" />,
+
4) for $  \sigma < 0 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108043.png" /></td> </tr></table>
+
$$
 +
\prod _ { r= } 1 ^  \mu  \Gamma ( \alpha _ {r} + \beta _ {r} s) F( s) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108044.png" /></td> </tr></table>
+
$$
 +
= \
 +
\prod _ { r= } 1 ^  \nu  \Gamma ( \gamma _ {r} - \delta _ {r} s)
 +
\sum _ { n= } 1 ^  \infty  l _ {n}  \mathop{\rm exp} ( \lambda _ {n} s);
 +
$$
  
5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108045.png" />;
+
5) $  \beta _ {1} + \dots + \beta _  \mu  = \delta _ {1} + \dots + \delta _  \nu  $;
  
 
6) if one assumes that
 
6) if one assumes that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108046.png" /></td> </tr></table>
+
$$
 +
\sum _ { r= } 1 ^  \nu  \gamma _ {r} - \sum _ { r= } 1 ^  \mu  \alpha _ {r} +
 +
\frac{1}{2}
 +
( \mu - \nu )  = \eta ,
 +
$$
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108047.png" />.
+
then $  \eta \geq  \alpha + 1/2 $.
  
For a fixed strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108048.png" /> there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108049.png" /> such that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108050.png" /> and large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108051.png" /> the estimate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108052.png" /> holds.
+
For a fixed strip $  \sigma _ {1} \leq  \sigma \leq  \sigma _ {2} $
 +
there is a constant $  \gamma = \gamma ( \sigma _ {1} , \sigma _ {2} ) $
 +
such that for $  \sigma _ {1} \leq  \sigma \leq  \sigma _ {2} $
 +
and large $  | t | $
 +
the estimate $  F( s) \ll  \mathop{\rm exp} ( \gamma | t | ) $
 +
holds.
  
 
===Conclusion.===
 
===Conclusion.===
For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108053.png" />,
+
For any $  \epsilon > 0 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108054.png" /></td> </tr></table>
+
$$
 +
\sum _ { n\leq  } x f( n)  = R( x) + O ( x ^ {\{ ( \alpha + 1) ( 2 \eta - 1) / ( 2
 +
\eta + 1) \} + \epsilon } ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108055.png" /> is the sum of the residues of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108056.png" /> over all its poles in the strip
+
where $  R( x) $
 +
is the sum of the residues of the function $  F( s) x  ^ {s} /s $
 +
over all its poles in the strip
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108057.png" /></td> </tr></table>
+
$$
 +
( \alpha + 1)
 +
\frac{2 \eta - 1 }{2 \eta + 1 }
 +
  < \sigma  \leq  \alpha + 1.
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Titchmarsh,  "The theory of the Riemann zeta-function" , Clarendon Press  (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Titchmarsh,  "The theory of the Riemann zeta-function" , Clarendon Press  (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The Riemann–von Mangoldt formula, or von Mangoldt formula, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108059.png" />, is
+
The Riemann–von Mangoldt formula, or von Mangoldt formula, for $  \psi ( x) $,  
 +
$  x> 1 $,  
 +
is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108060.png" /></td> </tr></table>
+
$$
 +
\psi ( x)  = x - \sum _ { p }
 +
\frac{x  ^ {p} }{p}
 +
+ \sum _ { n }
 +
\frac{x  ^ {-} 2n }{2n}
 +
+ \textrm{ const } .
 +
$$
  
 
This is von Mangoldt's reformulation of Riemann's main formula
 
This is von Mangoldt's reformulation of Riemann's main formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108061.png" /></td> </tr></table>
+
$$
 +
J( x)  =   \mathop{\rm Li} ( x) - \sum _ { p }  \mathop{\rm Li} ( x  ^ {p} ) -  \mathop{\rm log}  2+
 +
\int\limits _ { x } ^  \infty 
 +
\frac{dt}{t( t  ^ {2} - 1)  \mathop{\rm log}  t }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108062.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108064.png" />-function is
+
where $  x> 1 $,  
 +
the $  J $-
 +
function is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108065.png" /></td> </tr></table>
+
$$
 +
J( x)  =
 +
\frac{1}{2}
 +
\left ( \sum _ {p  ^ {n} < x }
 +
\frac{1}{n}
 +
+ \sum _
 +
{p  ^ {n} \leq  x }
 +
\frac{1}{n}
 +
\right )
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108066.png" /> is the [[logarithmic integral]]
+
and $  \mathop{\rm Li} ( x) $
 +
is the [[logarithmic integral]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091080/s09108067.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Li} ( x)  = \lim\limits _ {\epsilon \downarrow 0 } \left [ \int\limits _ { 0 } ^ { {1-\epsilon }  }
 +
\frac{dt}{ \mathop{\rm log}  t }
 +
+ \int\limits _ {1+ \epsilon } ^ { x } 
 +
\frac{dt}{ \mathop{\rm log}
 +
t }
 +
\right ] .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.M. Edwards,  "Riemann's zeta function" , Acad. Press  (1974)  pp. Chapt. 3</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.M. Edwards,  "Riemann's zeta function" , Acad. Press  (1974)  pp. Chapt. 3</TD></TR></table>

Revision as of 08:24, 6 June 2020


$ f $

The function of $ x \geq 1 $ that denotes the sum of the values $ f( n) $ of the function $ f $ on the set of natural numbers $ n \leq x $, $ \sum _ {n\leq } x f( n) $. Sum functions are one of the basic means of expressing various properties of sequences of numbers.

Examples of sum functions: the number of prime numbers $ \leq x $; $ \psi ( x) = \sum _ {n\leq } x \Lambda ( n) $— the Chebyshev function; the number of divisors of all $ n \leq x $, etc. (see [1], [2]).

The basic problem is to find as accurate as possible an expression of the sum function, and for a sum function which does not have asymptotics, to find the best estimate of its modulus for large values of $ x $.

The Cauchy integral theorem and Dirichlet series of the form

$$ F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s $$

form the basis of the analytic methods of studying sum functions. If such a series converges absolutely for $ \mathop{\rm Re} s > \sigma _ {0} \geq 1 $, then for a non-integer $ x $, and $ c > \sigma _ {0} $, the identity

$$ \sum _ { n\leq } x f( n) = \frac{1}{2 \pi i } \int\limits _ {c- i \infty } ^ { {c+ } i \infty } F( s) \frac{x ^ {s} }{s} ds $$

holds; a corresponding estimate of the sum function of $ f $ is obtained from this by analytic continuation of $ F( s) $ by shifting the integration path to the left to a certain $ \mathop{\rm Re} s = \sigma _ {1} < 0 $ and estimating the integral along the new path. If $ f( n) = \Lambda ( n) $, for example, the integration can be shifted to $ \mathop{\rm Re} s = - \infty $, which gives the Riemann–von Mangoldt formula for $ \psi ( x) $. Of the common applications of the method, the following theorem is known.

Assumptions:

$ f( n) $, $ l _ {n} $ are complex numbers, $ \alpha \geq 0 $, $ \alpha _ {r} $, $ \gamma _ {r} $ are real numbers, $ \sigma _ {r} $, $ \beta _ {r} $ are positive numbers, $ \mu $ and $ \nu $ are integers $ \geq 1 $, $ \Gamma $ is the gamma-function, and $ \lambda _ {1} < \lambda _ {2} < \dots $.

1) For any $ \epsilon > 0 $, $ f( n) \ll n ^ {\alpha + \epsilon } $;

2) the function

$$ F( s) = \sum _ { n= } 1 ^ \infty f( n) n ^ {-} s , $$

defined for $ s = \sigma + it $, $ \sigma > 1 + \alpha $, is meromorphic in the whole plane, and has a finite number of poles in the strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $;

3) the series $ \sum _ {n=} 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s) $ converges absolutely when $ \sigma < 0 $;

4) for $ \sigma < 0 $,

$$ \prod _ { r= } 1 ^ \mu \Gamma ( \alpha _ {r} + \beta _ {r} s) F( s) = $$

$$ = \ \prod _ { r= } 1 ^ \nu \Gamma ( \gamma _ {r} - \delta _ {r} s) \sum _ { n= } 1 ^ \infty l _ {n} \mathop{\rm exp} ( \lambda _ {n} s); $$

5) $ \beta _ {1} + \dots + \beta _ \mu = \delta _ {1} + \dots + \delta _ \nu $;

6) if one assumes that

$$ \sum _ { r= } 1 ^ \nu \gamma _ {r} - \sum _ { r= } 1 ^ \mu \alpha _ {r} + \frac{1}{2} ( \mu - \nu ) = \eta , $$

then $ \eta \geq \alpha + 1/2 $.

For a fixed strip $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ there is a constant $ \gamma = \gamma ( \sigma _ {1} , \sigma _ {2} ) $ such that for $ \sigma _ {1} \leq \sigma \leq \sigma _ {2} $ and large $ | t | $ the estimate $ F( s) \ll \mathop{\rm exp} ( \gamma | t | ) $ holds.

Conclusion.

For any $ \epsilon > 0 $,

$$ \sum _ { n\leq } x f( n) = R( x) + O ( x ^ {\{ ( \alpha + 1) ( 2 \eta - 1) / ( 2 \eta + 1) \} + \epsilon } ) , $$

where $ R( x) $ is the sum of the residues of the function $ F( s) x ^ {s} /s $ over all its poles in the strip

$$ ( \alpha + 1) \frac{2 \eta - 1 }{2 \eta + 1 } < \sigma \leq \alpha + 1. $$

References

[1] E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951)
[2] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)

Comments

The Riemann–von Mangoldt formula, or von Mangoldt formula, for $ \psi ( x) $, $ x> 1 $, is

$$ \psi ( x) = x - \sum _ { p } \frac{x ^ {p} }{p} + \sum _ { n } \frac{x ^ {-} 2n }{2n} + \textrm{ const } . $$

This is von Mangoldt's reformulation of Riemann's main formula

$$ J( x) = \mathop{\rm Li} ( x) - \sum _ { p } \mathop{\rm Li} ( x ^ {p} ) - \mathop{\rm log} 2+ \int\limits _ { x } ^ \infty \frac{dt}{t( t ^ {2} - 1) \mathop{\rm log} t } , $$

where $ x> 1 $, the $ J $- function is

$$ J( x) = \frac{1}{2} \left ( \sum _ {p ^ {n} < x } \frac{1}{n} + \sum _ {p ^ {n} \leq x } \frac{1}{n} \right ) $$

and $ \mathop{\rm Li} ( x) $ is the logarithmic integral

$$ \mathop{\rm Li} ( x) = \lim\limits _ {\epsilon \downarrow 0 } \left [ \int\limits _ { 0 } ^ { {1-\epsilon } } \frac{dt}{ \mathop{\rm log} t } + \int\limits _ {1+ \epsilon } ^ { x } \frac{dt}{ \mathop{\rm log} t } \right ] . $$

References

[a1] H.M. Edwards, "Riemann's zeta function" , Acad. Press (1974) pp. Chapt. 3
How to Cite This Entry:
Sum function of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sum_function_of_a_function&oldid=48904
This article was adapted from an original article by A.F. Lavrik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article