Namespaces
Variants
Actions

Difference between revisions of "Small image"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (link, fix tex)
 
Line 14: Line 14:
 
under a mapping  $  f:  X \rightarrow Y $''
 
under a mapping  $  f:  X \rightarrow Y $''
  
The set  $  f ^ { \srp } A $
+
The set  $  f ^ { \sharp } A $
 
of all  $  y \in Y $
 
of all  $  y \in Y $
for which $  f ^ { - 1 } y \subset  A $.  
+
for which the [[Kernel of a function|fibre]] $  f ^ { - 1 } y \subset  A $.  
An equivalent definition is:  $  f ^ { \srp } A = Y \setminus  f ( X \setminus  A) $.  
+
An equivalent definition is:  $  f ^ { \sharp } A = Y \setminus  f ( X \setminus  A) $.  
 
Closed and irreducible mappings may be characterized by means of small images. A [[Continuous mapping|continuous mapping]]  $  f:  X \rightarrow Y $
 
Closed and irreducible mappings may be characterized by means of small images. A [[Continuous mapping|continuous mapping]]  $  f:  X \rightarrow Y $
is closed (cf. [[Closed mapping|Closed mapping]]) if and only if the small image  $  f ^ { \srp } U $
+
is closed (cf. [[Closed mapping|Closed mapping]]) if and only if the small image  $  f ^ { \sharp } U $
 
of each open set  $  U \subset  X $
 
of each open set  $  U \subset  X $
 
is open. A continuous mapping  $  f:  X \rightarrow Y $
 
is open. A continuous mapping  $  f:  X \rightarrow Y $

Latest revision as of 16:30, 22 February 2021


of a set $ A \subset X $ under a mapping $ f: X \rightarrow Y $

The set $ f ^ { \sharp } A $ of all $ y \in Y $ for which the fibre $ f ^ { - 1 } y \subset A $. An equivalent definition is: $ f ^ { \sharp } A = Y \setminus f ( X \setminus A) $. Closed and irreducible mappings may be characterized by means of small images. A continuous mapping $ f: X \rightarrow Y $ is closed (cf. Closed mapping) if and only if the small image $ f ^ { \sharp } U $ of each open set $ U \subset X $ is open. A continuous mapping $ f: X \rightarrow Y $ onto $ Y $ is closed and irreducible (cf. Irreducible mapping) if and only if the small image of each non-empty open set $ U \subset X $ is a non-empty set.

How to Cite This Entry:
Small image. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Small_image&oldid=51638
This article was adapted from an original article by V.V. Fedorchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article